- Что такое электронный ключ?
- Базовая схема транзисторного ключа
- На чем делаются транзисторные ключи
- Изготовление ключа на полевом транзисторе
- Статический режим работы
- Насыщение ключа
- Недостатки ненасыщенного ключа
- Быстродействие
- Взаимодействие с другими ключами
- Что выбрать
- Пример работы
- Расчет транзисторного ключа на практике
- Применение транзисторного ключа в связке с МК
- Транзистор в режиме ключа
- Пример работы транзистора в режиме ключа
- Режим насыщения
- Практические конструкции
- Работа с микроконтроллерами
- Заключение
Что такое электронный ключ?
Ключ – это, если упростить, обыкновенный выключатель. С его помощью замыкается и размыкается электрическая цепь. У биполярного транзистора имеется три вывода:
- Коллектор.
- Эмиттер.
- База.
На биполярных полупроводниках строятся электронные ключи – конструкция простая, не требует наличия большого количества элементов. При помощи переключателя осуществляется замыкание и размыкание участка цепи. Происходит это с помощью сигнала управления (который вырабатывает микроконтроллер), подаваемого на базу транзистора.
Базовая схема транзисторного ключа
- А что теперь надо сделать, чтобы лампочка вообще не горела? Отключить ее ручками? Зачем? Ведь у нас есть управляемый резистор: коллектор-эмиттер, сопротивление которого мы можем менять, прогоняя через базу определенную силу тока Итак, что нужно для того, чтобы лампочка вообще перестала гореть?
Возможны два способа:
- Первый способ. Полностью отключить питание от резистора базы.
В реальности вывод базы является своего рода маленькой антенной, которая может принимать различные наводки и помехи из окружающего пространства. От этих наводок в базе может начать течь ток малого номинала. А как вы помните, для того, чтобы открыть транзистор много и не надо. И может даже случится так, что лампочка будет даже очень тихонько светится!
Как же выйти из этой ситуации? Да очень легко! Достаточно поставить резистор между базой и эмиттером, то есть сделать так, чтобы при отключении напряжения, на базе напряжение было равно нулю. А какой вывод транзистора у нас находится под нулем? Эмиттер! То есть научным языком, мы должны сделать так, чтобы потенциал на базе был равен потенциалу на эмиттере
И что, теперь каждый раз при отключении заземлять базу? В идеале – да. Но есть более хитрое решение Достаточно поставить резистор между базой и эмиттером. Его номинал в основном берут примерно в 10 раз выше, чем номинал базового резистора.
Так как в схеме появился еще один резистор, то базовый резистор назовем RБ , а резистор между базой и эмиттером не будем придумывать и назовем RБЭ. Схема примет вот такой вид:
Как же ведет себя резистор RБЭ в схеме? Если ключ S замкнут, то этот резистор не оказывает никакого влияния на работу схемы, так как через него протекает и без того малая сила тока, которая управляет базой. Ну а если ключ S разомкнут, то, как я уже сказал, потенциал на базе будет равняться потенциалу эмиттера, то есть нулю.
- Второй способ. Добиться того, чтобы UБЭ
Что в первом, что во втором случае транзистор у нас не пропускает ток через коллектор-эмиттер. В этом случае говорят, что транзистор находится в режиме “отсечки“.
На чем делаются транзисторные ключи
Изготовление ключа на полевом транзисторе
Собрать такую простую схему можно и навесным монтажом, но я решил изготовить миниатюрную печатную плату с помощью лазерно-утюжной технологии (ЛУТ). Порядок действий, следующий:
1) Вырезаем кусок текстолита, подходящий под размеры рисунка печатной платы, зачищаем его мелкой наждачной бумагой и обезжириваем спиртом или растворителем.
2) На специальной термотрансферной бумаге печатаем рисунок печатной платы. Можно использовать глянцевую бумагу из журналов или кальку. Плотность тонера на принтере следует выставить максимальную.
3) Переносим рисунок с бумаги на текстолит, используя утюг. При этом следует контролировать, чтобы бумажка с рисунком не смещалась относительно текстолита. Время нагрева зависит от температуры утюга и лежит в пределах 30 – 90 секунд.
4) В итоге на текстолите появляется рисунок дорожек в зеркальном отображении. Если тонер местами плохо прилип к будущей плате, можно подправить огрехи в помощью женского лака для ногтей.
5) Далее, кладём текстолит травиться. Существует множество способов изготовить раствор для травления, я пользуюсь смесью лимонной кислоты, соли и перекиси водорода.
После травления плата приобретает такой вид:
6) Затем необходимо удалить тонер с текстолита, проще всего это сделать с помощью жидкости для снятия лака для ногтей. Можно использовать ацетон и другие подобные растворители, я применил нефтяной сольвент.
7) Дело за малым – теперь осталось просверлить отверстия в нужных местах и залудить плату. После этого она приобретает такой вид:
Плата готова к запаиванию в неё деталей. Потребуются всего два резистора и транзистор.
На плате имеются два контакта для подачи на них управляющего напряжения, два контакта для подключения источника, питающего нагрузку, и два контакта для подключения самой нагрузки. Плата со впаянными деталями выглядит вот так:
В качестве нагрузки для проверки работы схемы я взял два мощных резистора по 100 Ом, включенных параллельно.
Использовать устройство я планирую в связке с датчиком влажности (плата на заднем плане). Именно с него на схему ключа поступает управляющее напряжение 12 вольт. Испытания показали, что транзисторный ключ прекрасно работает, подавая напряжение на нагрузку. Падение напряжение на транзисторе при этом составило 0,07 вольта, что в данном случае совсем не критично. Нагрева транзистора на наблюдается даже при постоянной работе схемы. Успешной сборки!
Статический режим работы
В нём проводится анализ закрытого и открытого состояния ключа. В первом на входе находится низкий уровень напряжения, который обозначает сигнал логического нуля. При таком режиме оба перехода находятся в обратном направлении (получается отсечка). А на коллекторный ток может повлиять только тепловой. В открытом состоянии на входе ключа находится высокий уровень напряжения, соответствующий сигналу логической единицы. Возможной является работа в двух режимах одновременно. Такое функционирование может быть в области насыщения или линейной области выходной характеристики. На них мы остановимся детальнее.
Насыщение ключа
В таких случаях переходы транзистора являются смещенными в прямом направлении. Поэтому, если изменится ток базы, то значение на коллекторе не поменяется. В кремниевых транзисторах для получения смещения необходимо примерно 0,8 В, тогда как для германиевых напряжение колеблется в рамках 0,2-0,4 В. А как вообще достигается насыщение ключа? Для этого увеличивается ток базы. Но всё имеет свои пределы, равно как и увеличение насыщения. Так, при достижении определённого значения тока, оно прекращает увеличиться. А зачем проводить насыщение ключа? Есть специальный коэффициент, что отображает положение дел. С его увеличением возрастает нагрузочная способность, которую имеют транзисторные ключи, дестабилизирующие факторы начинают влиять с меньшей силой, но происходит ухудшение быстродействия. Поэтому значение коэффициента насыщения выбирают из компромиссных соображений, ориентируясь по задаче, которую необходимо будет выполнить.
Недостатки ненасыщенного ключа
А что будет, если не было достигнуто оптимальное значение? Тогда появятся такие недостатки:
- Напряжение открытого ключа упадёт потеряет примерно до 0,5 В.
- Ухудшится помехоустойчивость. Это объясняется возросшим входным сопротивлением, что наблюдается в ключах, когда они в открытом состоянии. Поэтому помехи вроде скачков напряжения будут приводить и к изменению параметров транзисторов.
- Насыщенный ключ обладает значительной температурной стабильностью.
Как видите, данный процесс всё же лучше проводить, чтобы в конечном итоге получить более совершенное устройство.
Быстродействие
Этот параметр зависит от максимальной допустимой частоты, когда может осуществляться переключение сигналов. Это в свою очередь зависит от длительности переходного процесса, что определяется инерционностью транзистора, а также влиянием паразитных параметров. Для характеристики быстродействия логического элемента часто указывают среднее время, которое происходит при задержке сигнала, при его передаче в транзисторный ключ. Схема, отображающая его, обычно именно такой усреднённый диапазон отклика и показывает.
Взаимодействие с другими ключами
Для этого используются элементы связи. Так, если первый ключ на выходе имеет высокий уровень напряжения, то на входе второго происходит открытие и работает в заданном режиме. И наоборот. Такая цепь связи существенно влияет на переходные процессы, что возникают во время переключения и быстродействия ключей. Вот как работает транзисторный ключ. Наиболее распространёнными являются схемы, в которых взаимодействие совершается только между двумя транзисторами. Но это вовсе не значит, что это нельзя сделать устройством, в котором будет применяться три, четыре или даже большее число элементов. Но на практике такому сложно бывает найти применение, поэтому работа транзисторного ключа такого типа и не используется.
Что выбрать
С чем лучше работать? Давайте представим, что у нас есть простой транзисторный ключ, напряжение питания которого составляет 0,5 В. Тогда с использованием осциллографа можно будет зафиксировать все изменения. Если ток коллектора выставить в размере 0,5мА, то напряжение упадёт на 40 мВ (на базе будет примерно 0,8 В). По меркам задачи можно сказать, что это довольно значительное отклонение, которое накладывает ограничение на использование в целых рядах схем, к примеру, в коммутаторах аналоговых сигналов. Поэтому в них применяются специальные полевые транзисторы, где есть управляющий р–n-переход. Их преимущества над биполярными собратьями такие:
- Незначительное значение остаточного напряжения на ключе в состоянии проводки.
- Высокое сопротивление и, как результат – малый ток, что протекает по закрытому элементу.
- Потребляется малая мощность, поэтому не нужен значительный источник управляющего напряжения.
- Можно коммутировать электрические сигналы низкого уровня, которые составляют единицы микровольт.
Транзисторный ключ реле – вот идеальное применение для полевых. Конечно, это сообщение здесь размещено исключительно для того, чтобы читатели имели представление об их применении. Немного знаний и смекалки – и возможностей реализаций, в которых есть транзисторные ключи, будет придумано великое множество.
Пример работы
Давайте рассмотрим более детально, как функционирует простой транзисторный ключ. Коммутируемый сигнал передаётся с одного входа и снимается с другого выхода. Чтобы запереть ключ, на затвор транзистора используют подачу напряжения, которое превышает значения истока и стока на величину, большую в 2-3 В. Но при этом следует соблюдать осторожность и не выходить за пределы допустимого диапазона. Когда ключ закрыт, то его сопротивление относительно большое – превышает 10 Ом. Такое значение получается благодаря тому, что дополнительно влияет ещё и ток обратного смещения p-n перехода. В этом же состоянии емкость между цепью переключаемого сигнала и управляющим электродом колеблется в диапазоне 3-30 пФ. А теперь откроем транзисторный ключ. Схема и практика покажут, что тогда напряжение управляющего электрода будет близиться к нулю, и сильно зависит от сопротивления нагрузки и коммутируемой характеристики напряжения. Это обусловлено целой системой взаимодействий затвора, стока и истока транзистора. Это создаёт определённые проблемы для работы в режиме прерывателя.
В качестве решения данной проблемы были разработаны различные схемы, которые обеспечивают стабилизацию напряжения, что протекает между каналом и затвором. Причем благодаря физическим свойствам в таком качестве может использоваться даже диод. Для этого его следует включить в прямое направление запирающего напряжения. Если будет создаваться необходимая ситуация, то диод закроется, а р-n-переход откроется. Чтобы при изменении коммутируемого напряжения он оставался открытым, и сопротивление его канала не менялось, между истоком и входом ключа можно включить высокоомный резистор. А наличие конденсатора значительно ускорит процесс перезарядки емкостей.
Расчет транзисторного ключа на практике
Ну что же, давайте рассчитаем наш базовый резистор для этой схемы в режиме насыщения. На базу будем подавать распространенное питание в 5 В.
Возьмем транзистор средней мощности КТ819Б и лампочку-нагрузку для нашего транзисторного ключа. Лампочка на 6 В.
0,23 Ампера. Именно такую силу тока должна кушать наша лампочка в режиме насыщения, когда транзистор полностью открыт. То есть это у нас будет коллекторный ток Ik . Так как сопротивление нити накала лампочки меняется при подключении ее к источнику питания, то лучше всего сразу же измерить ее силу тока, как мы и сделали.
Теперь дело за малым. Надо замерить коэффициент бета. Для этого случая на моем рабочем столе есть прибор транзисторметр. Итак, у меня получилось значение 148
Итак, находим ток базы по формуле
Чем больше силы тока мы подаем на базу, тем больше мы вводим транзистор в режим глубокого насыщения. Здесь уже вы сами должны выбрать значение коэффициента насыщения. Как я уже писал выше, чем больше коэффициент, тем сильнее уходит транзистор в режим насыщения. Режим глубокого насыщения чреват тем, что он задерживает выключение транзистора, но хорош тогда, когда надо долго держать нагрузку включенной, так как в этом случае транзистор греется меньше всего. Если вы не забыли, мощность, рассеиваемая на транзисторе будет равна P=UКЭ х IН
P – это мощность в Ваттах
UКЭ – напряжение между коллектором и эмиттером, В
IН – сила тока, протекающая через нагрузку и коллектор-эмиттер, А
Из формулы: чем меньше UКЭ , тем меньше будет греться транзистор
Берем ближайший из ряда, то есть 1 кОм.
Давайте посмотрим, будет ли работать наш транзисторный ключ? Итак, RБ берем рассчитанное значение в 1 кОм.
Собираем схему и смотрим, как она работает
В данном случае синие провода – это питание с Bat2 (MEILI), а другие два провода – это питание с блока питания Bat1 (YaXun)
Как вы помните, лампочка у нас потребляла силу тока в 0,23 Ампер при прямом включении ее к блоку питания. Сейчас же она кажет почти то же самое значение с небольшой погрешностью. Но можно все равно сказать, что при открытом транзисторном ключе сопротивление коллектора-эмиттера очень мало. То есть все напряжение поступает на лампу.
Так как амперметр на YaXun стрелочный и не может измерять очень маленькие значение тока, то воспользуемся мультиметром и посмотрим, сколько же потребляет наш транзистор в режиме полного открытия. Для этого ставим мультиметр в разрыв цепи. Более подробно, как измерять силу тока и напряжение мультиметром, вы можете прочитать в этой статье.
Мы получили 4,5 мА. Очень близко к расчетному 4,7 мА. Не забываем подтянуть базу к земле резистором большим номиналом RБЭ, иначе база может поймать помеху и открыть невзначай транзистор, что приведет к ложному срабатыванию. В нашем случае мы берем резистор от 10 кОм и более.
Ну все, такой транзисторный ключ будет уже защищен от ложных срабатываний и его можно использовать в своих электронных безделушках.
Применение транзисторного ключа в связке с МК
Транзисторный ключ очень часто можно увидеть в схемах, где МК или другой логический элемент коммутирует мощную нагрузку. Как вы помните, максимальную силу тока, которую может выдать МК на одну ножку, равняется 20 миллиампер. Поэтому чаще всего можно увидеть вот такое схемотехническое решение на биполярном транзисторе в режиме ключа:
В резистор RБЭ нет необходимости, потому как выходы МК “подтягивается” к нулю еще при программировании.
Транзистор в режиме ключа
Транзистор в режиме ключа выполняет те же функции, что и электромагнитное реле или выключатель. Ток управления протекает следующим образом:
- От микроконтроллера через переход «база — эмиттер».
- При этом канал «коллектор — эмиттер» открывается.
- Через канал «коллектор — эмиттер» можно пропустить ток, величина которого в сотни раз больше, нежели базового.
Особенность транзисторных переключателей в том, что частота коммутации намного выше, нежели у реле. Кристалл полупроводника способен за одну секунду совершить тысячи переходов из открытого состояния в закрытое и обратно. Так, скорость переключения у самых простых биполярных транзисторов — около 1 млн раз в секунду. По этой причине транзисторы используют в инверторах для создания синусоиды.
Пример работы транзистора в режиме ключа
Коэффициент усиления – это одна из основных характеристик транзистора. Именно этот параметр показывает, во сколько раз ток, протекающий по каналу «эмиттер — коллектор», выше базового. Допустим, коэффициент равен 100 (обозначается этот параметр h21Э). Значит, если в цепь управления подается ток 1 мА (ток базы), то на переходе «коллектор — эмиттер» он будет 100 мА. Следовательно, произошло усиление входящего тока (сигнала).
При работе транзистор нагревается, поэтому он нуждается в пассивном или активном охлаждении – радиаторах и кулерах. Но нагрев происходит только в том случае, когда проход «коллектор — эмиттер» открывается не полностью. В этом случае большая мощность рассеивается – ее нужно куда-то девать, приходится «жертвовать» КПД и выпускать ее в виде тепла. Нагрев будет минимальным только в тех случаях, когда транзистор закрыт или открыт полностью.
Режим насыщения
У всех транзисторов имеется определенный порог входного значения тока. Как только произойдет достижение этого значения, коэффициент усиления перестает играть большую роль. При этом выходной ток не изменяется вообще. Напряжение на контактах «база — эмиттер» может быть выше, нежели между коллектором и эмиттером. Это состояние насыщения, транзистор открывается полностью. Режим ключа говорит о том, что транзистор работает в двух режимах – либо он полностью открыт, либо же закрыт. Когда полностью перекрывается подача тока управления, транзистор закрывается и перестает пропускать ток.
Практические конструкции
Практических схем использования транзисторов в режиме ключа очень много. Нередко их используют для включения и отключения светодиодов с целью создания спецэффектов. Принцип работы транзисторных ключей позволяет не только делать «игрушки», но и реализовывать сложные схемы управления. Но обязательно в конструкциях необходимо использовать резисторы для ограничения тока (они устанавливаются между источником управляющего сигнала и базой транзистора). А вот источником сигнала может быть что угодно – датчик, кнопочный выключатель, микроконтроллер и т. д.
Работа с микроконтроллерами
При расчете транзисторного ключа нужно учитывать все особенности работы элемента. Для того чтобы работала система управления на микроконтроллере, используются усилительные каскады на транзисторах. Проблема в том, что выходной сигнал у контроллера очень слабый, его не хватит для того, чтобы включить питание на обмотку электромагнитного реле (или же открыть переход очень мощного силового ключа). Лучше применить биполярный транзисторный ключ, которым произвести управление MOSFET-элементом.
Применяются несложные конструкции, состоящие из таких элементов:
- Биполярный транзистор.
- Резистор для ограничения входного тока.
- Полупроводниковый диод.
- Электромагнитное реле.
- Источник питания 12 вольт.
Диод устанавливается параллельно обмотке реле, он необходим для того, чтобы предотвратить пробой транзистора импульсом с высоким ЭДС, который появляется в момент отключения обмотки.
Сигнал управления вырабатывается микроконтроллером, поступает на базу транзистора и усиливается. При этом происходит подача питания на обмотку электромагнитного реле – канал «коллектор — эмиттер» открывается. При замыкании силовых контактов происходит включение нагрузки. Управление транзисторным ключом происходит в полностью автоматическом режиме – участие человека практически не требуется. Главное – правильно запрограммировать микроконтроллер и подключить к нему датчики, кнопки, исполнительные устройства.
Заключение
В настоящее время биполярные транзисторы уже морально устаревают. На смену им приходят мощные полевые транзисторы и твердотельные реле, так как они практически не потребляют ток. Также часто в режиме ключа используют диоды, тиристоры, терморезисторы и даже электронные лампы. Электронные ключи широко применяются в различных автоматических устройствах, в логических схемах и системах управления. Чем же хорош ключ на биполярном транзисторе? Я думаю, скорее всего своей дешевизной, широким распространением и долговечностью самих биполярных транзисторов.
Для упрощения рассказа можно представить транзистор в виде переменного резистора. Вывод базы это есть как раз та самая ручка, которую можно покрутить. При этом изменяется сопротивление участка коллектор – эмиттер. Крутить базу, конечно, не надо, может оторваться. А вот подать на нее некоторое напряжение относительно эмиттера, конечно, можно.
Если напряжение не подавать вовсе, а просто взять и замкнуть выводы базы и эмиттера пусть даже и не накоротко, а через резистор в несколько КОм. Получается, что напряжение база – эмиттер (Uбэ) равно нулю. Следовательно, нет и тока базы. Транзистор закрыт, коллекторный ток пренебрежительно мал, как раз тот самый начальный ток. Примерно такой же, как у диода в обратном направлении! В этом случае говорят, что транзистор находится в состоянии ОТСЕЧКИ, что на обычном языке значит, закрыт или заперт.
Противоположное состояние называется НАСЫЩЕНИЕ. Это когда транзистор открыт полностью, так, что дальше открываться уже некуда. При такой степени открытия сопротивление участка коллектор эмиттер настолько мало, что включать транзистор без нагрузки в коллекторной цепи просто нельзя, сгорит моментально. При этом остаточное напряжение на коллекторе может составить всего 0,3…0,5В.
Чтобы довести транзистор до такого состояния, надо обеспечить достаточно большой ток базы, подав на нее относительно эмиттера большое напряжение Uбэ,- порядка 0,6…0,7В. Да, для перехода база-эмиттер такое напряжение без ограничительного резистора очень велико. Ведь входная характеристика транзистора, показанная на рисунке 1, очень похожа на прямую ветвь характеристики диода.
Рисунок 1. Входная характеристика транзистора
Эти два состояния – насыщение и отсечка, используются в том случае, когда транзистор работает в ключевом режиме наподобие обычного контакта реле. Основной смысл такого режима в том, что малый ток базы управляет большим током коллектора, который в несколько десятков раз больше тока базы. Большой ток коллектора получается за счет внешнего источника энергии, но все равно усиление по току, что называется, налицо. Простой пример: маленькая микросхема включает большую лампочку!
Чтобы определить величину такого усиления транзистора в ключевом режиме используется «коэффициент усиления по току в режиме большого сигнала». В справочниках от обозначается греческой буквой β «бетта». Практически для всех современных транзисторов при работе в ключевом режиме этот коэффициент никак не меньше 10…20 Определяется β как соотношение максимально возможного тока коллектора к минимально возможному току базы. Величина безразмерная, просто «во сколько раз».
Даже если ток базы будет больше, чем требуется, беды особой нет: транзистор все равно не сможет открыться больше. На то он и режим насыщения. Кроме обычных транзисторов для работы в ключевом режиме используются «дарлингтоновские» или составные транзисторы. Их «супер — бетта» может достигать 1000 и более раз.
Как рассчитать режим работы ключевого каскада
Чтобы не быть совсем голословным, попробуем рассчитать режим работы ключевого каскада, схема которого показана на рисунке 2.
Задача такого каскада очень простая: включить и выключить лампочку. Конечно, нагрузка может быть любой, — обмотка реле, электромотор, просто резистор, да мало ли что. Лампочка взята просто для наглядности эксперимента, для его упрощения. Наша задача чуть посложнее. Требуется рассчитать величину резистора Rб в цепи базы, чтобы лампочка горела в полный накал.
Такие лампочки применяются для подсветки приборной доски в отечественных авто, поэтому найти ее несложно. Транзистор КТ815 с током коллектора 1,5А для такого опыта вполне подойдет.
Самое интересное во всей этой истории, что напряжения в расчетах участия не принимают, лишь бы соблюдалось условие β ≥ Iк/Iб. Поэтому лампочка может быть на рабочее напряжение 200В, а базовая цепь управляться от микросхем с напряжением питания 5В. Если транзистор рассчитан на работу с таким напряжением на коллекторе, то лампочка будет мигать без проблем.
Но в нашем примере микросхем никаких не предвидится, базовая цепь управляется просто контактом, на который просто подается напряжение 5В. Лампочка на напряжение 12В, ток потребления 100мА. Предполагается, что наш транзистор имеет β ровно 10. Падение напряжения на переходе база – эмиттер Uбэ = 0,6В. См. входную характеристику на рисунке 1.
При таких данных ток в базе должен быть Iб = Iк / β = 100 / 10 = 10(мА).
Напряжение на базовом резисторе Rб составит (за вычетом напряжения на переходе база — эмиттер) 5В – Uбэ = 5В – 0,6В = 4,4В.
Вспоминаем закон Ома: R = U / I = 4,4В / 0,01А = 440Ом. Согласно системе СИ подставляем напряжение в вольтах, ток в амперах, результат получаем в Омах. Из стандартного ряда выбираем резистор сопротивлением 430Ом. На этом расчет можно считать законченным.
Но, кто внимательно посмотрит на схему, может спросить: «А почему ничего не было сказано о резисторе между базой и эмиттером Rбэ? Про него просто забыли, или он не так и нужен?»
Назначение этого резистора — надежно закрыть транзистор в тот момент, когда кнопка разомкнута. Дело в том, что если база будет «висеть в воздухе», воздействие всяческих помех на нее просто гарантировано, особенно, если провод до кнопки достаточно длинный. Чем не антенна? Почти, как у детекторного приемника.
Чтобы надежно закрыть транзистор, ввести его в режим отсечки необходимо, чтобы потенциалы эмиттера и базы были равны. Проще всего было бы в нашей «учебной схеме» использовать переключающий контакт. Надо включить лампочку перекинули контакт на +5В, а когда потребовалось выключить — просто замкнули вход всего каскада на «землю».
Но не всегда и не везде можно позволить такую роскошь, как лишний контакт. Поэтому проще выровнять потенциалы базы и эмиттера при помощи резистора Rбэ. Номинал этого резистора рассчитывать не надо. Обычно его принимают равным десяти Rб. Согласно практическим данным его величина должна быть 5…10КОм.
Рассмотренная схема является разновидностью схемы с общим эмиттером. Тут можно отметить две особенности. Во-первых, это использование в качестве управляющего напряжения 5В. Именно такое напряжение используется, когда ключевой каскад подключается к цифровым микросхемам или, что теперь более вероятно, к микроконтроллерам.
Во-вторых, сигнал на коллекторе инвертирован по отношению к сигналу на базе. Если на базе присутствует напряжение, контакт замкнут на +5В, то на коллекторе оно падает практически до нуля. Ну, не до нуля, конечно, а до напряжения указанного в справочнике. При этом лампочка визуально не инвертируется,- сигнал на базе есть, есть и свет.
Инвертирование входного сигнала происходит не только в ключевом режиме работы транзистора, но и в режиме усиления. Но об этом будет рассказано в следующей части статьи.
Для упрощения рассказа можно представить транзистор в виде переменного резистора. Вывод базы это есть как раз та самая ручка, которую можно покрутить. При этом изменяется сопротивление участка коллектор – эмиттер. Крутить базу, конечно, не надо, может оторваться. А вот подать на нее некоторое напряжение относительно эмиттера, конечно, можно.
Если напряжение не подавать вовсе, а просто взять и замкнуть выводы базы и эмиттера пусть даже и не накоротко, а через резистор в несколько КОм. Получается, что напряжение база – эмиттер (Uбэ) равно нулю. Следовательно, нет и тока базы. Транзистор закрыт, коллекторный ток пренебрежительно мал, как раз тот самый начальный ток. Примерно такой же, как у диода в обратном направлении! В этом случае говорят, что транзистор находится в состоянии ОТСЕЧКИ, что на обычном языке значит, закрыт или заперт.
Противоположное состояние называется НАСЫЩЕНИЕ. Это когда транзистор открыт полностью, так, что дальше открываться уже некуда. При такой степени открытия сопротивление участка коллектор эмиттер настолько мало, что включать транзистор без нагрузки в коллекторной цепи просто нельзя, сгорит моментально. При этом остаточное напряжение на коллекторе может составить всего 0,3…0,5В.
Чтобы довести транзистор до такого состояния, надо обеспечить достаточно большой ток базы, подав на нее относительно эмиттера большое напряжение Uбэ,- порядка 0,6…0,7В. Да, для перехода база-эмиттер такое напряжение без ограничительного резистора очень велико. Ведь входная характеристика транзистора, показанная на рисунке 1, очень похожа на прямую ветвь характеристики диода.
Рисунок 1. Входная характеристика транзистора
Эти два состояния – насыщение и отсечка, используются в том случае, когда транзистор работает в ключевом режиме наподобие обычного контакта реле. Основной смысл такого режима в том, что малый ток базы управляет большим током коллектора, который в несколько десятков раз больше тока базы. Большой ток коллектора получается за счет внешнего источника энергии, но все равно усиление по току, что называется, налицо. Простой пример: маленькая микросхема включает большую лампочку!
Чтобы определить величину такого усиления транзистора в ключевом режиме используется «коэффициент усиления по току в режиме большого сигнала». В справочниках от обозначается греческой буквой β «бетта». Практически для всех современных транзисторов при работе в ключевом режиме этот коэффициент никак не меньше 10…20 Определяется β как соотношение максимально возможного тока коллектора к минимально возможному току базы. Величина безразмерная, просто «во сколько раз».
Даже если ток базы будет больше, чем требуется, беды особой нет: транзистор все равно не сможет открыться больше. На то он и режим насыщения. Кроме обычных транзисторов для работы в ключевом режиме используются «дарлингтоновские» или составные транзисторы. Их «супер — бетта» может достигать 1000 и более раз.
Как рассчитать режим работы ключевого каскада
Чтобы не быть совсем голословным, попробуем рассчитать режим работы ключевого каскада, схема которого показана на рисунке 2.
Задача такого каскада очень простая: включить и выключить лампочку. Конечно, нагрузка может быть любой, — обмотка реле, электромотор, просто резистор, да мало ли что. Лампочка взята просто для наглядности эксперимента, для его упрощения. Наша задача чуть посложнее. Требуется рассчитать величину резистора Rб в цепи базы, чтобы лампочка горела в полный накал.
Такие лампочки применяются для подсветки приборной доски в отечественных авто, поэтому найти ее несложно. Транзистор КТ815 с током коллектора 1,5А для такого опыта вполне подойдет.
Самое интересное во всей этой истории, что напряжения в расчетах участия не принимают, лишь бы соблюдалось условие β ≥ Iк/Iб. Поэтому лампочка может быть на рабочее напряжение 200В, а базовая цепь управляться от микросхем с напряжением питания 5В. Если транзистор рассчитан на работу с таким напряжением на коллекторе, то лампочка будет мигать без проблем.
Но в нашем примере микросхем никаких не предвидится, базовая цепь управляется просто контактом, на который просто подается напряжение 5В. Лампочка на напряжение 12В, ток потребления 100мА. Предполагается, что наш транзистор имеет β ровно 10. Падение напряжения на переходе база – эмиттер Uбэ = 0,6В. См. входную характеристику на рисунке 1.
При таких данных ток в базе должен быть Iб = Iк / β = 100 / 10 = 10(мА).
Напряжение на базовом резисторе Rб составит (за вычетом напряжения на переходе база — эмиттер) 5В – Uбэ = 5В – 0,6В = 4,4В.
Вспоминаем закон Ома: R = U / I = 4,4В / 0,01А = 440Ом. Согласно системе СИ подставляем напряжение в вольтах, ток в амперах, результат получаем в Омах. Из стандартного ряда выбираем резистор сопротивлением 430Ом. На этом расчет можно считать законченным.
Но, кто внимательно посмотрит на схему, может спросить: «А почему ничего не было сказано о резисторе между базой и эмиттером Rбэ? Про него просто забыли, или он не так и нужен?»
Назначение этого резистора — надежно закрыть транзистор в тот момент, когда кнопка разомкнута. Дело в том, что если база будет «висеть в воздухе», воздействие всяческих помех на нее просто гарантировано, особенно, если провод до кнопки достаточно длинный. Чем не антенна? Почти, как у детекторного приемника.
Чтобы надежно закрыть транзистор, ввести его в режим отсечки необходимо, чтобы потенциалы эмиттера и базы были равны. Проще всего было бы в нашей «учебной схеме» использовать переключающий контакт. Надо включить лампочку перекинули контакт на +5В, а когда потребовалось выключить — просто замкнули вход всего каскада на «землю».
Но не всегда и не везде можно позволить такую роскошь, как лишний контакт. Поэтому проще выровнять потенциалы базы и эмиттера при помощи резистора Rбэ. Номинал этого резистора рассчитывать не надо. Обычно его принимают равным десяти Rб. Согласно практическим данным его величина должна быть 5…10КОм.
Рассмотренная схема является разновидностью схемы с общим эмиттером. Тут можно отметить две особенности. Во-первых, это использование в качестве управляющего напряжения 5В. Именно такое напряжение используется, когда ключевой каскад подключается к цифровым микросхемам или, что теперь более вероятно, к микроконтроллерам.
Во-вторых, сигнал на коллекторе инвертирован по отношению к сигналу на базе. Если на базе присутствует напряжение, контакт замкнут на +5В, то на коллекторе оно падает практически до нуля. Ну, не до нуля, конечно, а до напряжения указанного в справочнике. При этом лампочка визуально не инвертируется,- сигнал на базе есть, есть и свет.
- https://www.syl.ru/article/348974/tranzistornyie-klyuchi-shema-printsip-rabotyi-i-osobennosti
- https://web-shpargalka.ru/pnp-tranzistor-v-rezhime-kljucha.php
- https://planshet-info.ru/kompjutery/jelektronnyj-kljuch-shema-na-tranzistore-12-volt
- https://SdelaySam-SvoimiRukami.ru/4200-klyuch-na-polevom-tranzistore.html
- https://FB.ru/article/237454/tranzistornyie-klyuchi-shema-printsip-rabotyi
Помогла ли вам статья?