- ESR — оно же эквивалентное последовательное сопротивление
- Таблица ESR
- ESR — Equivalent Series Resistance
- Обучение
- Таблицы максимальных значений ESR у электролитических конденсаторов
- Таблица ESR конденсаторов
- ESR новых электролитических конденсаторов (тестер LCR T4)
- Таблица значений ESR, применяемая Бобом Паркером в ESR-метре K7214
- Максимально-допустимые ESR конденсаторов Китайского и японского производства
- Падение напряженности и общая емкость
- Ток при последовательном соединении конденсаторов
- Физические формулы и примеры вычислений
- Купил китайский тестер конденсаторов, диодов, транзисторов и т.д.
- Замер ёмкости и параметров электролитического конденсатора.
- Проверка биполярных транзисторов.
- Проверка диодов универсальным тестером.
- Вывод и впечатления от прибора
- Самодельная приставка -метр, измеряющийконденсаторов без выпаивания с печатной платы.
ESR — оно же эквивалентное последовательное сопротивление
— это очень важный параметр конденсаторов. Для чего он нужен и как его определить, об этом мы как раз и поговорим в нашей статье.
Думаю, все вы в курсе, что в нашем бесшабашном мире нет ничего идеального. То же самое касается и электроники. Радиоэлементы, каскады, радиоузлы также частенько дают сбои. Можно даже вспомнить недавнюю историю с космическим кораблем «Прогресс». Сбой какого-то узла повлек гибель целого гиганта космической отрасли. Даже простой, на первый взгляд, радиоэлемент конденсатор, имеет в своем составе не только емкость, но и другие паразитные параметры. Давайте рассмотрим схему, из чего все-таки состоит наш реальный конденсатор?
где
r — это сопротивление диэлектрика и корпуса между обкладками конденсатора
С — собственно сама емкость конденсатора
ESR — эквивалентное последовательное сопротивление
ESI (чаще его называют ESL) — эквивалентная последовательная индуктивность
Вот на самом деле из чего состоит простой безобидный конденсатор, особенно электролитический. Рассмотрим эти параметры более подробно:
r — сопротивление диэлектрика. Диэлектриком может быть электролит в электролитических конденсаторах, бумага или еще какая-нибудь дрянь). Также между выводами конденсатора находится его корпус. Он тоже обладает каким-то сопротивлением и тоже сделан из диэлектрика и относится сюда же.
С — емкость конденсатора, которая написана на самом конденсаторе плюс-минус некоторые отклонения, связанные с погрешностью.
ESI(ESL) — последовательная индуктивность — это собственная индуктивность обкладок и выводов. На низких частотах можно не учитывать. Почему? Читаем статью катушка индуктивности в цепи постоянного и переменного тока.
ESR представляет из себя сопротивление выводов и обкладок
Как вы знаете, сопротивление проводника можно узнать по формуле:
где
ρ — это удельное сопротивление проводника
l — длина проводника
S — площадь поперечного сечения проводника
Так что можете посчитать приблизительно сопротивление выводов конденсатора и заодно его обкладок
Но, конечно же, так никто не делает. Для этого есть специальные приборы, которые умеют замерять этот самый параметр. Например, мой прибор с Алиэкспресса, который я недавно приобрел.
Таблица ESR
Для чего нужна таблица?
Большинство пробников и тестеров, обычно светодиодные или стрелочные, измеряют импеданс — общее сопротивление конденсатора (активное и реактивное). Активное отдельно замерить сложнее, но оно и есть потери — значение ESR.
При измерении ёмкостей менее 100 микрофарад, реактивная составляющая уже оказывается соизмеримой, а иногда больше значения ESR, и существенно влияет на результат. А в конденсаторах менее 10 мкф и вовсе значение ESR во много раз меньше и его доля незначительна в общем показании. Точно замерить ESR у них невозможно такими пробниками, но выявить неисправные конденсаторы можно.
Другими словами, реактивное сопротивление в показаниях таких приборов — неудобная погрешность, зависимая от ёмкости конденсатора. Её надо учитывать при оценке качества конденсатора для разных ёмкостей.
К тому же ESR зависит от толщины слоя электролита и диэлектрика. Для высоковольтных и крупногабаритных конденсаторов эти значения учитываются производителями в зависимости от области применения.
Никакой пропорциональной зависимости ESR от других параметров конденсатора не существует, поэтому для оценки его качества в практике используются таблицы.
Все существующие таблицы — условны и не всегда объективно определяют допустимые значения для всех измерителей. Публикуют их часто для популяризации сайтов, поэтому важно понимать суть значений в таблицах.
Тем более, разные пробники работают на разных принципах или частотах (от 10 до 100 кГц), разница показаний в 5 или 10 раз может отличаться от табличных лишь по этой причине.
Очень полезно самому замерить значения ESR у новых конденсаторов разных производителей и составить свою таблицу для своего пробника. Это уже будут реальные показатели. Тогда их можно сравнить с неисправными конденсаторами и со значениями их реактивных сопротивлений, чтоб сделать какие-то выводы о критичности.
В преобразователях блоков питания греют конденсатор паразитные десятые, иногда сотые доли Ома и, если их сможет показать Ваш измеритель, уже неплохо.
Импульсный ток в конденсаторах достигает десятков Ампер и активные десятые доли Ома для 10 Ампер — это уже реальные Ватты — нагрев.
Габариты конденсатора тоже имеют существенное значение, они будут охлаждать электролит, это надо учитывать при выборе типа конденсатора в мощных преобразователях.
Практика показала, тонкие конденсаторы Low ESR, установленные при замене в блоках питания вместо крупногабаритных обычных, частенько долго там не живут, перегреваются, закипают и вздуваются иногда уже через несколько месяцев работы.
Для самого популярного в ИИП конденсатора 1000мкф x 25в часто в таблицах указывают 0.08 Ом, как норму. А в других таблицах 0.8 Ом. Какой прибор что мерит, кто и для каких цепей определил ему норму — загадки.
Проверьте для сравнения своим прибором этот конденсатор новый от разных производителей, в том числе с пометкой Low ESR, тогда оценка будет объективнее.
ESR — Equivalent Series Resistance
— один из параметров конденсатора, характеризующий его активные потери в цепи переменного тока.
В эквиваленте его можно представить, как включенный последовательно с конденсатором резистор, сопротивление которого определяется,
главным образом, диэлектрическими потерями, а так же сопротивлением обкладок, внутренних контактных соединений и выводов.
В русскоязычной аббревиатуре — Эквивалентное Последовательное Сопротивление — ЭПС.
Потери в диэлектрике, обусловленные особенностями его поляризации, составляют основную часть потерь в конденсаторе и определяются материалом,
а так же толщиной слоя диэлектрика.
Поляризация — ограниченное смещение связанных зарядов диэлектрика в электрическом поле.
Рассматривать детально процессы всех видов поляризации здесь нет необходимости, но вкратце это можно пояснить следующим образом:
Частицы диэлектрика, обладающие зарядом, под воздействием переменного электрического поля вынуждены совершать непроизвольные механические колебания,
обусловленные их переориентацией и смещением (поляризацией).
В слоях диэлектрика, близких к обкладкам, заряды, не покидая своих связей,
активно участвуют во всех процессах формирования напряжения и тока в конденсаторе, как и проводники. По сути, уменьшается толщина слоя реального диэлектрика.
В результате существенно повышается ёмкость конденсатора но, по причине инертности и внутреннего трения связанных частиц,
процессы сопровождаются выделением тепла и потерями энергии в токопроводящих слоях диэлектрика. То есть, эти поляризованные слои обладают активным сопротивлением электрическому току.
С увеличением частоты, диэлектрические потери пропорционально возрастают по той же причине — механической инертности поляризованных зарядов.
Сопротивление токопроводящих слоёв диэлектрика последовательно складывается с сопротивлением обкладок, выводов и контактных соединений. В итоге образуется общее активное сопротивление R — Equivalent Series Resistance (ESR). По сути оно представляет собой резистор, включенный последовательно с конденсатором.
В этом случае угол сдвига фаз между током и напряжением будет не 90°, как в идеальном конденсаторе, а несколько меньше.
Тангенс угла δ, составляющего эту разницу с 90°, называют тангенсом угла потерь.
Тангенс угла определится отношением активного сопротивления к реактивному R/Xc, как тригонометрическая функция отношения двух катетов треугольника сопротивлений, показанного на рисунке выше.
В электролитических конденсаторах значимой частью ESR является сопротивление жидкого электролита,
который используется в качестве одной из обкладок для обеспечения максимальной площади соприкосновения с диэлектриком.
Активное сопротивление электролита в реальных конденсаторах обычно соизмеримо с десятыми или даже с сотыми долями Ома при 20°C, но для конденсаторов большой ёмкости, используемых в фильтрах выпрямителей ИИП на рабочей частоте порядка 100 кГц,
когда его реактивное сопротивление измеряется тысячными долями Ома, эта величина может составлять основные потери, и будет значительно уменьшаться по мере прогрева.
При рабочей температуре величина диэлектрических потерь на таких частотах обычно оказывается в несколько раз больше.
Сопротивление электролита зависит от температуры по причине изменения степени его вязкости и подвижности ионов.
В процессе работы происходит нагрев диэлектрика и электролита переменным током, в связи с чем существенно уменьшается сопротивление электролита,
тогда ESR конденсатора будет определяться преимущественно его диэлектрическими потерями, которые продолжат греть конденсатор в допустимых расчётами пределах.
Но, в случаях разогрева до температуры кипения, электролит утрачивает свои первоначальные свойства и при последующем охлаждении становится
более вязким, что ухудшает подвижность ионов и повышает активное сопротивление. Дальнейшая эксплуатация будет вызывать ещё больший разогрев и ухудшение качества электролита, что в последствии приведёт к непригодности конденсатора для дальнейшей работы.
Неисправные конденсаторы, в которых кипел электролит, обычно определяются визуально по вздувшемуся и разгерметизированному корпусу.
Для надёжности работы электролитических конденсаторов очень важен правильный выбор его типа,
номинала и максимального напряжения в зависимости от режимов и условий эксплуатации.
Для фильтров выпрямителей в преобразователях, работающих на частотах десятков или сотен килогерц, производители выпускают специальные конденсаторы с малым ESR и указывают полное сопротивление переменному току (импеданс Z) для всех номиналов в таблицах.
Тип таких конденсаторов сопровождается пометкой в технической документации — Low impedance или Low ESR.
Для анализа состояния электролита и внутренних соединений электролитических конденсаторов применяются измерители или пробники ESR,
которые могут быть выполнены исходя из разных принципов измерений и требований к погрешностям.
Большая часть простых ESR-пробников и тестеров основана на принципе измерения импеданса. У них есть свой существенный плюс — низкоомный вход, что позволяет проверять конденсаторы, не выпаивая их из платы.
Подробнее о способах измерения можно ознакомиться на страничке — измерение ESR.
Наряду с ухудшением качества электролита, часто активное сопротивление в конденсаторах возрастает по причине ухудшения контактов обкладок с выводами, вплоть до полного обрыва. В электролитических это происходит чаще, в металлокерамических реже, телевизионным мастерам все эти случаи хорошо знакомы. А ремонтники старшего поколения, кто застал советские ламповые телевизоры, хорошо помнят бумажные конденсаторы, которые иногда поджимали пассатижами для уплотнения контактных соединений внутри, и они какое-то время ещё работали.
Обучение
С появлением импульсных блоков питания, а так же другой импульсной аппаратуры, у современных электролитических конденсаторов, помимо такого важного параметра как емкость конденсатора, появился еще такой важный параметр — ЭПС конденсатора. ЭПС — это последовательное эквивалентное сопротивление конденсатора. В английской аббревиатуре она называется ESR (Equivalent Series Resistance).
Чтобы разобраться с ЭПС эквивалентном последовательном сопротивлением конденсатора, напомню конструкцию электролитического конденсатора.
На фотографии показаны разобранные электролитические конденсаторы. Внутри стакана находится виток, в котором смотаны обкладки конденсатора.
Этот размотанный виток состоит из алюминиевой фольги — фольга выполняет роль обкладок конденсатора. Между обкладками проложена бумага, которая пропитана электролитом. Выводы конденсатора к обкладкам крепиться с помощью заклепок.
Любой электронный компонент не идеален, в том числе и конденсатор. Электролитический конденсатор можно представить набором таких элементов,
где C — это емкость, собственно сам конденсатор, резистор Rp — это сопротивление диэлектрика в конденсаторе. Величина данного резистора составляет десятки и сотни МОм. Этот резистор влияет на ток утечки конденсатора. Так как обкладки конденсатора свернуты между собой, образуется индуктивность. Значение этой индуктивности составляет где-то примерно 10 нГн. Резистор Rc — это активное сопротивление конденсатора. На его значение влияет химический состав электролита, высох электролит или еще нет, сопротивление выводов конденсатора, а также сопротивление мест крепления к выводов конденсатора к собственно к обкладкам конденсатора. Значение сопротивление этого резистора больше всего оказывает влияние на значение величины эквивалентного последовательного сопротивления конденсатора.
Вот схема обычного выпрямителя.
Эквивалентное последнее сопротивление данного конденсатора исправного, нового оно очень мало и им можно пренебречь и обычно что и делают — пренебрегают. Эта схема нормально работает, конденсатор выполняет свою функцию сглаживает пульсации. Теперь в конденсаторе появилась сопротивление — появилось большое внутреннее активное сопротивление.
Что при этом происходит. Через это сопротивление течет ток, и соответственно, сопротивление нагревается, а поскольку оно находится внутри — греется сам конденсатор и происходит такое явление, как высыхании электролита. И со временем это сопротивление увеличивается. Электролит сохнет, емкость электролитического конденсатора уменьшается и соответственно он уже не выполняет свою функцию по фильтрации пульсаций в данном блоке питания. Конденсатор выходит из строя, и, собственно говоря, вся схема становится здесь неработоспособной. На выходе из данного выпрямителя будут большие пульсации. Вот такое вредное воздействие оказывает увеличение эквивалентного последовательного сопротивления конденсатора.
Таблицы максимальных значений ESR у электролитических конденсаторов
Мы уже привыкли к основным параметрам конденсатора: ёмкости и рабочему напряжению. Но в последнее время не менее важным параметром стало его эквивалентное последовательное сопротивление (ЭПС). Что же это такое и на что оно влияет?
Любой электронный компонент не идеален. Это относится и к конденсатору. Совокупность его свойств показывает условная схема.
Как видим, реальный конденсатор состоит из ёмкости C, которую мы привыкли видеть на схемах в виде двух вертикальных полос. Далее резистор Rs, который символизирует активное сопротивление проволочных выводов и контактного сопротивления вывод – обкладка.
Так как любой, даже очень хороший диэлектрик имеет определённое сопротивление (до сотен мегаом), то параллельно обкладкам изображается резистор Rp. Именно через этот «виртуальный» резистор течёт так называемый ток утечки. Естественно, никаких резисторов внутри конденсатора нет. Это лишь для наглядности и удобного представления.
Из-за того, что обкладки у электролитического конденсатора скручиваются и устанавливаются в алюминиевый корпус, образуется индуктивность L.
Свои свойства эта индуктивность проявляет лишь на частотах выше резонансной частоты конденсатора. Приблизительное значение этой индуктивности – десятки наногенри.
Итак, из всего этого выделим то, что входит в ЭПС электролитического конденсатора:
- Универсальный измеритель параметров радиодеталей
- Сопротивление, которое вызвано потерями в диэлектрике из-за его неоднородности, примесей и наличия влаги;
- Омическое сопротивление проволочных выводов и обкладок. Активное сопротивление проводов;
- Контактное сопротивление между обкладками и выводами;
- Сюда же можно включить и сопротивление электролита, которое увеличивается из-за испарения растворителя электролита и изменения его химического состава вследствие взаимодействия его с металлическими обкладками.
Все эти факторы суммируются и образуют сопротивление конденсатора, которое и назвали эквивалентным последовательным сопротивлением – сокращённо ЭПС, а на зарубежный манер ESR (Equivalent Serial Resistance).
Как известно, электролитический конденсатор в силу своего устройства может работать только в цепях постоянного и пульсирующего тока из-за своей полярности. Собственно, его и применяют в блоках питания для фильтрации пульсаций после выпрямителя. Запомним эту особенность конденсатора – пропускать импульсы тока.
Из всего сказанного следует, что электролитические конденсаторы, работающие в высокочастотных импульсных схемах (блоки питания, инверторы, преобразователи, импульсные стабилизаторы) работают в довольно экстремальных условиях и выходят из строя чаще. Зная это производители выпускают специальные серии с низким ESR. На таких конденсаторах, как правило, присутствует надпись Low ESR, что означает «низкое ЭПС».
При ремонте любой аппаратуры необходимо производить замеры ESR при помощи специального измерительного прибора — ESR-метра. Для тестирования конденсаторов и измерения ESR существует немало серийно выпускаемых приборов. На сегодняшний день самый доступный — это универсальный тестер радиокомпонентов LCR-T4 Tester, функционал которого поддерживает замер ESR конденсаторов. В радиотехнических журналах можно встретить описания самодельных приборов и приставок к мультиметрам для измерения ESR. В продаже можно найти и узкоспециализированные ESR-метры, которые способны измерять ёмкость и ЭПС без выпайки их из платы, а также разряжать их перед этим с целью защиты прибора от повреждения высоким остаточным напряжением конденсатора. К таким приборам относятся, например, такие как ESR-micro v3.1, ESR-micro V4.0s, ESR-micro v4.0SI.
Максимально допустимые значения ESR электролитических конденсаторов приведены в таблицах ниже.
Таблица ESR конденсаторов
ESR (Equivalent Series Resistance) или, говоря по-русски — Эквивалентное последовательное сопротивление — это один из параметров конденсатора, который указывает его активные потери в цепи переменного тока. Для каждого конденсатора значения ЭПС определяется специальным оборудованием — ESR-измерителями. На многих из них намаркирована таблица значений ЭПС.
Они бывают разного производства и поэтому некоторые их показатели могут отличаться. Причина тому — замеры на разных частотах, у каждого измерителя они индивидуальны. Таблица ESR конденсаторов, которые можно найти в сети — подбираются путем проверки данных на новых конденсаторах ESR-измерителями. В данной статье мы собрали таблицы значений от разных приборов, найденные на специализированных сайтах. Каждую из них вы сможете скачать или сохранить себе для работы.
ESR новых электролитических конденсаторов (тестер LCR T4)
мкф/вольты | 6,3V | 10V | 16V | 25V | 35V | 50V | 63V | 160V | 250V | 400V | 450V |
1 | 4,3 | 10 | |||||||||
2,2 | |||||||||||
4,7 | 1,7 | 2,6 | |||||||||
10 | 2 | 1,1 | 2,7 | 2,2 | |||||||
22 | 0,69 | 1,2 | 0,77 | ||||||||
33 | 0,44 | 0,91 | |||||||||
47 | 0,84 | 0,87 | 0,49 | 0,68 | |||||||
68 | 0,33 | ||||||||||
82 | 0,57 | 0,55/ 0,89 | |||||||||
100 | 0,46 | 0,75 | 0,17 | 0,4 | 0,29 | 0,43 | 0,77 | 0,35 | |||
220 | 0,53 | 0,25 | 0,49 | ||||||||
330 | 0,25 | 0,22 | |||||||||
470 | 0,16 | 0,13 | 0,12 | 0,08 | |||||||
1000 | 0,07 | 0,08 | 0,07 | ||||||||
2200 | 0,03 | 0,02 | 0,03 | ||||||||
4700 | 0,03 |
В качестве образцов для измерения ESR (Таблица №1) использовались новые конденсаторы разных производителей. Преимущественно это конденсаторы Jamicon серии TK – с широким температурным диапазоном (значения выделены жирным шрифтом), а также ELZET, SAMWHA и GEMBIRD. Стоит отметить, что при проверке конденсаторы Jamicon показали более низкое значение ESR по сравнению с другими.
Отмечу и то, что производители выпускают конденсаторы с разными характеристиками и свойствами. Их делят на серии. В приведённой таблице приводится ESR обычных конденсаторов.
Кроме них выпускаются и конденсаторы Low ESR и Low Impedance, ЭПС которых, как правило, очень мал и порой составляет сотые доли ома.
Заносить величину ESR или импеданса таких конденсаторов в таблицу нет особого смысла, так как он очень мал и его легко узнать из документации на серию.
В колонке на 450V для ёмкости 82μF указано два значения ESR. Первое – среднее значение для конденсаторов SAMWHA (SD, 85 0 C(M)). Второе, выделенное цветом, это ESR конденсатора CapXon (LY, 105 0 C) для ЖК-телевизоров в вытянутом корпусе (13х50).
Отмечу ещё раз, что разные модели ESR-метров могут показывать разную величину ESR у одного и того же конденсатора. Как уже говорилось, эквивалентное последовательное сопротивление зависит от многих факторов, да и методика его измерения у различных приборов отличается. Поэтому здесь и указано, какой прибор применялся для измерений.
Для сравнения приведу ещё одну таблицу. Перед вами Таблица №2 с ориентировочными значениями ESR для электролитических конденсаторов разной ёмкости. Данная таблица используется Бобом Паркером в разработанном им ESR-метре K7214.
Таблица значений ESR, применяемая Бобом Паркером в ESR-метре K7214
Как видно, некоторые ячейки таблицы №3 пусты. Для конденсаторов ёмкостью до 10 мкФ максимально допустимой величиной ESR приемлемо считать 4 – 5 Ом.
Еще одна старенькая, но более полная табличка:
Максимально-допустимые ESR конденсаторов Китайского и японского производства
Падение напряженности и общая емкость
Ёмкость конденсатора – это величина, определяющая количество заряда, который он способен в себе сохранить. Выражение имеет следующий вид:
C = q/U.
Здесь q – заряд, накопленный между обкладками конденсатора, U – напряжение к ним приложенное.
Вышеописанная формула представляет общий случай. На практике при расчете ёмкости конденсатора следует учитывать ряд других переменных:
C = E0ES/d,
где:
- E0 – электрическая постоянная, равная 8,85*10-12 Ф/м,
- E – диэлектрическая проницаемость среды, в которой располагаются обкладки конденсатора,
- S – их площадь пересечения,
- d – расстояние между обкладками.
Стандартная модель конденсатора имеет следующий вид.
Модель конденсатора
Обкладки чаще всего изготовлены из тонкого листового алюминия и скручены в рулон. Делается это для увеличения их площади, ведь так ёмкость конденсатора становится существенно больше.
От выбора диэлектрика, устанавливаемого производителем между обкладками конденсатора, зависит номинальное и максимальное напряжение прибора. Это, в свою очередь, определяет его сферу применения. Если к обкладкам приложить чрезмерную разность потенциалов, то напряжённость поля между ними превысит допустимый уровень, и произойдёт пробой диэлектрика. Подобная ситуация особенно пагубно влияет на электролитические конденсаторы и ионисторы. В случае их пробоя прибор частично или полностью теряет способность накапливать заряд и в дальнейшем становится непригодным для работы.
При последовательном и параллельном включении разных конденсаторов существенно изменяются их характеристики. Данное свойство этих деталей активно используется инженерами-электронщиками и радиолюбителями. Знание принципов подключения позволяет им более продуктивно разрабатывать новые устройства.
Ток при последовательном соединении конденсаторов
Электрический ток бывает двух видов: постоянным и переменным. Для работы ёмкостей это имеет большое значение.
Физические формулы и примеры вычислений
Формулы для эквивалентных сопротивлений цепи, состоящей из пары резисторовR1 иR2, можно выделить в определённый ряд:
- параллельное присоединение определяют по формуле Rэкв. = (R1*R2)/R1+R2;
- последовательное включение вычисляют, определяя его сумму Rэкв. = R1+R2.
У смешанного соединения резистивных элементов нет конкретной формулы. Чтобы не запутаться при длительных преобразованиях, здесь допустимо воспользоваться специальной программой из интернета. Это сервис «онлайн-калькулятор». Он поможет разобраться со сложными схемами соединения, будь то треугольник, квадрат, пятиугольник или иная схематичная фигура, образованная резистивными элементами.
Понять, как работают все формулы и методы, можно на конкретной задаче. На представленном первом рисунке – смешанная электрическая схема. Она включает в себя 10 резисторов. Элементы представлены в следующих номиналах:
- R1 = 1 Ом;
- R2 = 2 Ом;
- R3 = 3 Ом;
- R4 = 6 Ом;
- R5 = 9 Ом;
- R6 = 18 Ом;
- R7 = 2Ом;
- R8 = 2Ом;
- R9 = 8 Ом;
- R10 = 4 Ом.
Напряжение, поданное на схему:
U = 24 В.
Требуется рассчитать токи на всех резистивных элементах.
Исходная цепь
Для расчётов применяется закон Ома:
I = U/R, подставляя вместо R эквивалентное сопротивление.
Внимание! Для решения этой задачи сначала вычисляют общее (эквивалентное) R, после чего уже рассчитывают ток в цепи и напряжение на каждом резистивном компоненте.
Вычисляя Rэкв., разделяют заданную цепь на звенья, вмещающие в себя параллельные и последовательные включения. Делают расчёты для каждого такого звена, после – всей цепи целиком.
На рисунке выше изображено смешанное соединение сопротивлений. Его можно разбить на три участка:
- АВ – участок, имеющий две параллельных ветви;
- ВС – отрезок, вмещающий в себя последовательное сопряжение;
- CD – отрезок схемы с расположением трёх параллельных цепочек.
Сопротивления R2 и R3, образующие нижнюю ветку отрезка АВ, соединены последовательно, что учитывается при расчёте.
Последовательно соединённые резисторы R2 и R3
Если посмотреть на участок СD, то можно отметить смешанное включение резистивных элементов.
Смешанное включение на участке CD
Начало расчётов состоит в определении эквивалентных сопротивлений для этих смешанных фрагментов. Выполняют это в следующем порядке:
- Rэкв.2,3 = R2+R3=2 + 3 = 5 Ом;
- Rэкв.7,8 = (R7*R8)/R7 + R8 = (2*2)/2 + 2 = 1 Ом;
- Rэкв.7,8,9 = Rэкв.7,8 + R9 = 1 + 8 = 9 Ом.
Зная значения полученных эквивалентов, упрощают первоначальную схему. Она будет иметь вид, представленный на рисунке ниже.
Результат первого свёртывания
Далее можно уже определить Rэкв. для участковAB,BC,CD, по формулам:
- Rэкв.AB = (R1*Rэкв 2,3)/R1 + Rэкв 2,3 = (1*5)/1 + 5 = 0,83 Ом;
- Rэкв.BC = R4 + R5 = 6 + 9 = 15 Ом;
- 1/Rэкв.CD = 1/R6 + 1/Rэкв.7,8,9 + 1/R10 = 1/18 + 1/9 + 1/4 = 0,05 + 0,11 + 0,25 = 0,41 Ом.
В результате выполненных вычислений получается эквивалентная схема, в которую входят три Rэкв. сопротивления. Она имеет вид, показанный на рисунке ниже.
Результат последующего свёртывания
Теперь можно определить эквивалентное сопротивление всей первоначальной схемы, сложив эквивалентные значения всех трёх участков:
Rэкв. = Rэкв.AB + Rэкв.BC + Rэкв.CD = 0,83 + 15 + 0,41 = 56,83 Ом.
Далее, используя закон Ома, находят ток в последнем последовательном участке:
I = U/ Rэкв. = 24/56,83 = 0,42 А.
Зная силу тока, можно найти, какое падение напряжения на рассмотренных участках AB, BC, CD. Это выполняется следующим образом:
- UAB = I* Rэкв.AB= 0,42*0,83 = 0,35 В;
- UBC = I* Rэкв.BC= 0,42*15 = 6,3В;
- UCD = I* Rэкв.CD = 0,42*0,41 = 0,17 В.
Следующим шагом станет определение токов на параллельных отрезкахABиCD:
- I1 = UAB/R1 = 0,35/1 = 0,35 А;
- I2 = UAB/Rэкв.2,3 = 0,35/5 = 0,07 А;
- I3 = UCD/R6 = 0,17/18 = 0,009 А;
- I6 = UCD/Rэкв.7,8,9= 0,17/9 = 0,02 А;
- I7 = UCD/R10 = 0,17/4 = 0,04 А.
Далее, чтобы найти значения токов, проходящих через R7 и R8, нужно рассчитать напряжение на этих двух резисторах. Предварительно находят падение напряжения на R9.
U9 = R9*I6 = 8*0,02 = 0,16 В.
Теперь напряжение, падающее на Rэкв.7,8, будет разностью между U CD и U9.
U7,8 = UCD – U9= 0,17 – 0,16 = 1 В.
После этого можно уже узнать значение токов, движущихся по резисторамR7 иR8, используя формулы:
- I4 = U7,8/R7 = 1/2 = 0,5 A;
- I5 = U7,8/R8 = 1/2 = 0,5 A.
Стоит заметить! Ток, протекающий через R4 и R5, по своему значению равен току на отрезке, не имеющем разветвления.
Рассчитывая схемы и решая задачи по нахождению значений электрических параметров, необходимо использовать эквивалентные сопротивления. С помощью такой замены сложные построения превращаются в элементарные цепи, которые сводятся к параллельным и последовательным соединениям резистивных элементов.
Купил китайский тестер конденсаторов, диодов, транзисторов и т.д.
Большинство глюков и неисправностей в компьютерной технике связаны с выходом из строя конденсаторов. Специально для определения состояния подозрительный конденсаторов я купил на ебее девайс с длинным названием Mega328 Transistor Tester Diode Triode Capacitance ESR Meter MOS/PNP/NPN L/C/R (далее- просто тестер).
Этот девайс продают без корпуса, без инструкции, вообще без чего бы то ни было:
Цена с доставкой- от 12$. Такой же точно у нас на радиорынке продают за 20 баксов.
C помощью этого тестера можно измерять такие параметры конденсатора, как ёмкость, ESR (эквивалентное последовательное сопротивление) и утечку тока.
Вообще, тестер может мерить много чего:
Но мне пока сей девайс нужен только для конденсаторов и вот, что хотелось бы отметить:
1. Меряет хорошо, проверял на новых конденсаторах. Кроме ёмкости показывает так же ESR (эквивалентное последовательное сопротивление). ESR вообще штука коварная- конденсатор может выглядеть целым и не вздувшимся, но работать не будет если ESR выше нормы.
Ориентироваться нужно по таблице:
2. Синяя колодка для установки выводных элементов не позволяет поставить в нее конденсатор с короткими ножками(выпаяный из платы). Потому для проверки конденсатора я припаивал к нему проводки:
И это я сделал напрасно, т.к. на тестере есть специальная площадка для тестирования SMD-компонентов и на ней можно удобно тестить выводные элементы с короткими ногами:
3. Тестировать конденсаторы не выпаивая их из платы не получится, тестер не работает в качестве внутрисхемного ESR-пробника.
В предыдущем примере я благополучно протестил конденсатор 2200 mF. Тот же конденсатор, но впаянный в плату, не тестируется:
4. Тестер питается от батарейки-кроны на 9 В. Но зачем же держать отдельную крону для такого девайса? Тестер будет использоваться по случаю и не где-нибудь в полях, а в рабочем кабинете. Потому переделаем его на работу от блока питания.
Смотрим на печатную плату тестера(кликабельно):
Видим, что напряжение от кроны идет двумя путями:
- на вход АЦП микропроцессора для определения уровня напряжения батарейки
- через микросхему 78L05 на питание микропроцессора и индикатора.
78L05 это стабилизатор, который преобразует входное напряжение 7… 20 В в выходное напряжение 5 В.
То есть, теоретически вместо кроны можно подключить какой-нибудь блок питания с выходным напряжением от 7 до 12 (на всякий случай) вольт от старого свича, сканера или чего-то подобного и тестер должен работать.
На 7 вольт блока питания я, к сожалению, не нашел, нашел на 12. Подсоединил к тестеру, включил:
При запуске тестер проверил напряжение «на батарейке» и увидел там 12.2 В. В остальном отличий от использования кроны не заметил- результат измерения эталонного конденсатора точно такой же, как и в случае, когда в качестве питания подключена крона.
Значит, система работает. Я и не сомневался, но проверять всегда надо.
Далее выпаял разъем питания(мама) из старого ADSL-модема и припаял его на тестер вместо крепления батарейки-кроны:
Теперь тестер работает от блока питания:
И в дальнейшем не надо будет вечно выколупывать крону из ампервольтметра, когда вдруг понадобится срочно замерить конденсатор.
Замер ёмкости и параметров электролитического конденсатора.
Для начала проверим электролитический конденсатор на 1000 мкФ * 16V. Подключаем один вывод электролита к выводу 1, а другой к выводу 3.
Можно подключит один из выводов к клемме 2. Прибор сам определит, к каким выводам подключен конденсатор. Далее жмём на красную кнопку.
На экране результат: ёмкость — 1004 мкФ (1004 μF); ЭПС — 0,05 Ом (ESR = 0,05Ω); Vloss = 1,4%. О параметре Vloss расскажу позднее.
Проверка танталового электролитического конденсатора 22 мкФ * 35в.
Результат: ёмкость — 24,4 мкФ; ЭПС — 0,2 Ом., Vloss = 0,4%
Тестер можно использовать и для замера ёмкости у обычных конденсаторов с ёмкостью где-то от 20 пикофарад (20pF). Если подключить к ZIF-Панели выносные щупы, то можно проверять и детали, выполненные в корпусах для поверхностного (SMT) монтажа. Я, например, с помощью этого тестера подбирал SMD-конденсаторы и резисторы.
Обращаю внимание! Перед тестированием конденсаторов, особенно электролитических, их необходимо разрядить! Иначе можно повредить прибор высоким остаточным напряжением. Особенно это относится к электролитам, выпаянным с плат.
Проверка биполярных транзисторов.
В качестве подопытного «кролика» возьмём наш КТ817Г. Как видим, у биполярных транзисторов измеряется коэффициент усиления hFE (он же h21э) и напряжение смещения Б-Э (открытия транзистора) Uf. Для кремниевых биполярных транзисторов напряжение смещения находится в пределах 0,6 ~ 0,7 вольт. Для нашего КТ817Г оно составило 0,615 вольт (615mV).
Составные биполярные транзисторы тоже распознаёт. Вот только параметрам на дисплее я бы верить не стал. Ну, действительно. Не может составной транзистор иметь коэффициент усиления hFE = 37. Для КТ973А минимальный hFE должен быть не менее 750.
Как оказалось, структуру для КТ973А (PNP) и КТ972А (NPN) определяет верно. Но вот всё остальное замеряет некорректно.
Стоит учесть, что если хотя бы один из переходов транзистора пробит, то тестер может определить его как диод.
Проверка диодов универсальным тестером.
Образец для испытаний — диод 1N4007.
Для диодов указывается падение напряжения на p-n переходе в открытом состоянии Uf. В техдокументации на диоды указывается как VF — Forward Voltage (иногда VFM). Замечу, что при разном прямом токе через диод величина этого параметра также меняется.
Для данного диода 1N4007: VF=677mV (0,677V). Это нормальное значение для низкочастотного выпрямительного диода. А вот у диодов Шоттки это значение ниже, поэтому их и рекомендуют применять в устройствах с низковольтным автономным питанием.
Кроме этого тестер замеряет и ёмкость p-n перехода (C=8pF).
Результат проверки диода КД106А. Как видим, ёмкость перехода у него во много раз больше, чем у диода 1N4007. Аж 184 пикофарады!
Если вместо диода установить светодиод и включить проверку, то во время тестирования он будет задорно помигивать.
Для светодиодов тестер показывает ёмкость перехода и минимальное напряжение, при котором светодиод открывается и начинает излучать. Конкретно для этого красного светодиода оно составило Uf = 1,84V.
Как оказалось, универсальный тестер справляется и с проверкой сдвоенных диодов, которые можно встретить в компьютерных блоках питания, преобразователях напряжения автоусилителей, всевозможных блоках питания.
Проверка сдвоенного диода MBR20100CT.
Тестер показывает падение напряжения на каждом из диодов Uf = 299mV (в даташитах указывается как VF), а также цоколёвку. Не забываем, что сдвоенные диоды бывают как с общим анодом, так и общим катодом.
Вывод и впечатления от прибора
К небольшим минусам прибора должен отнести:
- проверка стабилитронов с напряжением стабилизации только до 4,5 В;
- не защищенный шлейф ЖК индикатора (корпус мастерить обязательно).
Несмотря на имеющиеся минусы, плюсов у прибора гораздо больше и не одному радиолюбителю, а так же профессионально занятому в сфере электроники человеку, прибор способен значительно облегчить жизнь.
Самодельная приставка -метр, измеряющийконденсаторов без выпаивания с печатной платы.
Прошло примерно полтора года, с тех пор, как я начал регулярно заниматься ремонтами электроники. Как оказалось дело это не менее интересное, чем конструирование электронных конструкций. Понемногу появились люди, желающие, кто время от времени, а кто и регулярно, сотрудничать со мной как с мастером. В связи с тем что рентабельность большинства производимых ремонтов не позволяет снимать помещение, иначе аренда съедает большую часть прибыли, работаю в основном на дому либо выезжаю с инструментами к знакомым ИП имеющим скупку бытовой электроники и мастерскую.
Параллельно со знакомым, выкупаем технику на местном форуме и Авито, ремонтируем и знакомый реализует, оба в долях с реализации. Но суть не в этом. Сегодня решил поделиться с читателями схемой простого, но очень полезного для любого ремонтника – электронщика устройства, ESR метра, позволяющего корректно измерять этот параметр, в большинстве случаев без выпаивания электролитических конденсаторов. ESR, оно же ЭПС (Эквивалентное Последовательное Сопротивление) – параметр конденсатора очень сильно влияющий на его работоспособность при работе в высокочастотных цепях. Какие же это устройства?
Это абсолютно любые схемы с применением стабилизаторов, DC-DC преобразователей питания, импульсные блоки питания для любой техники, от компьютерной – до мобильных зарядок.
Вздувшийся конденсатор
Без этого устройства значительная часть ремонтов выполняемых мною либо вообще не могла бы быть выполнена, либо все же была выполнена, но с большими неудобствами в виде постоянного выпаивания и запаивания обратно электролитических конденсаторов небольшого номинала, с целью измерения эквивалентного последовательного сопротивления с помощью транзистор тестера. Мой же прибор, позволяет измерять этот параметр не выпаивая деталь, просто прикоснувшись пинцетом к выводам конденсатора.
Данные конденсаторы номиналом 0.33-22 мкФ, как известно очень редко имеют насечки в верхней части корпуса, по которым конденсаторы большего номинала, вздуваются и раскрываются розочкой, например всем знакомые конденсаторы на материнских платах и блоках питания. Дело в том, что конденсатор, не имеющий этих насечек для выпускания излишнего образовавшегося давления, визуально, без измерения прибором, даже для опытного электронщика ничем не отличим от полностью рабочего.
Компьютерный блок питания
Конечно, если домашнему мастеру предстоит разовый ремонт, например компьютерного блока питания АТХ формата, собирать данный прибор не имеет смысла, проще заменить сразу все конденсаторы мелкого номинала на новые, но если вы ремонтируете хотя бы пять блоков питания в полгода вам этот прибор уже желателен к сборке. Какие альтернативы есть, сборке этого измерителя? Покупной прибор стоимостью порядка 2000 рублей, ESR micro.
ESR micro – фото
Из отличий и достоинств покупного прибора могу назвать только то, что у него показания выводятся сразу в милли Омах, а у моего прибора нужно переводить из миллиВольт в миллиОмы. Что впрочем не вызывает затруднений, достаточно откалибровать прибор по значениям низкоомных точных резисторов и составить для себя таблицу. Поработав с прибором пару месяцев, уже визуально, безо всяких таблиц, просто взглянув на дисплей мультиметра уже видишь нормальное значение ESR конденсатора – на грани либо уже необходима замена. Схема моего прибора, кстати, в свое время была взята из журнала Радио.
- https://anticwar.ru/esr_kondensatora_tablitsa_9006
- https://anticwar.ru/esr_kondensatora_9837
- https://vesali.ru/skidki-i-rasprodazhi/tablitsa-esr-kondensatorov-skachat-tablitsy-dlya-novyh-kondensatorov
- https://cashbuzz.ru/hi-tech/1713-tablica-esr-kondensatorov-skachat-tablicy-dlya-novyh-kondensatorov.html
- https://el-come.ru/s-azov/posledovatelnoe-soprotivlenie-kondensatorov.html
- https://aseke.ru/elektronika/1393-tablicy-maksimal-nyh-znacheniy-esr-u-elektroliticheskih-kondensatorov.html
- http://www.comp-man.info/2015/12/capacitance-meter.html
- https://reshu-otvet.ru/tablica-esr-kondensatorov-dlja-kitajskogo-testera/
Помогла ли вам статья?