Полевой МОП транзистор – устройство и принцип работы

Содержание
  1. Что такое MOSFET транзисторы?
  2. Как они работают
  3. Мосфеты на материнской плате
  4. Мосфеты и блоки питания
  5. Базовая структура MOSFET транзистора
  6. Типы МОП-транзистора (MOSFET)
  7. Режим насыщения
  8. Классификация режима насыщения МОП- транзисторов
  9. Режим истощения
  10. Классификация режима истощения МОП-транзисторов
  11. Тип истощения канала N МОП-транзистор
  12. Тип канала истощения канала MOSFET
  13. Режим истощения МОП-транзистора
  14. N-канальный МОП-транзистор в режиме истощения
  15. Режим усиления МОП-транзистора
  16. Особенности режима усиления
  17. Режим усиления N-канального МОП-транзистора
  18. Графические обозначения транзисторов на схемах
  19. Символ на схеме разных типов МОП-транзистора (MOSFET)
  20. Отличие униполярных транзисторов от биполярных
  21. Отличия МОСФЕТ от полевых транзисторов
  22. Базовая структура MOSFET транзистора
  23. Усилитель на MOSFET
  24. Принцип работы МОП-транзисторов на примере прибора с n-проводимостью
  25. Преимущества и недостатки МОП-транзисторов
  26. Применение МОП-транзистора
  27. Проверка полевого MOSFET транзистора цифровым мультиметром
  28. Проверка встроенного диода
  29. Проверка работы полевого МОП транзистора
  30. Подведем итог

Что такое MOSFET транзисторы?

mosfet что это

МОП-транзистор представляет собой управляемый напряжением полевой транзистор, который отличается от полевого тем, что он имеет «металл-оксид» электрод затвора, который электрически изолирован от основного полупроводника п-каналом или каналом р-типа с очень тонким слоем изолирующего материала. Как правило, это диоксид кремния (а если проще, то стекло).

Этот ультратонкий изолированный металлический электрод затвора можно рассматривать как одну пластину конденсатора. Изоляция управляющего входа делает сопротивление МОП-транзистора чрезвычайно высоким, практически бесконечным.

Как и полевые, МОП-транзисторы имеют очень высокое входное сопротивление. Может легко накапливать большое количество статического заряда, который приводит к повреждению, если тщательно не защищены цепи.

Как они работают

Мосфеты напоминают выключатели, которые включаются и выключаются по сигналу интегральной микросхемы (ИС), называемой ШИМ-чипом/контроллером. Мосфеты быстро включаются и выключаются, что позволяет пропускать большой ток короткими очередями. Это, наряду с другими частями VRM, управляет напряжением, посылаемым на другие комплектующие.

Для охлаждения мосфетов во время экстремальных разгонов, энтузиасты часто используют водяное охлаждение.

Мосфеты на материнской плате

На ПК мосфеты образуют VRM (модуль регулятора напряжения), который контролирует, сколько напряжения получают комплектующие на материнской плате, такие как процессор или видеокарта.

Процессоры и видеокарты, имеют строгое рабочее напряжение, и VRM не допускает его превышения. Мосфеты важны для работы VRM и влияют на количество тепла, выделяемого VRM во время работы. Мосфеты могут довольно сильно нагреется, если вы используете мощную видеокарту. Радиатор материнской платы охлаждает мосфеты и, следовательно, VRM. Помимо обеспечения стабильности и безопасности всей системы в целом, охлаждение мосфетов важно для любого разгона.

Мосфеты и блоки питания

Мосфеты делают то же самое и в блоках питания. Они используются в преобразователях и цепях регуляторов для коммутации в импульсных источниках питания (SMPS).

В SMPS энергия извлекается из розетки перед ее разбиением на небольшие пакеты, а мосфеты работают переключателями. Затем эти пакеты передаются через конденсаторы, индукторы и другие электрические компоненты, способные накапливать энергию. В конце концов, пакеты сливаются в один для получения стабильного электропитания.

Оцените статью: (5 оценок, среднее: 4,00 из 5)
Загрузка…
Tweet

Pin It

Базовая структура MOSFET транзистора

Mosfet транзисторы принцип работы - фото 29

Конструкция MOSFET (что это, рассказано в статье подробно) очень отличается от полевых. Оба типа транзисторов используют электрическое поле, создаваемое напряжением на затворе. Чтобы изменить поток носителей заряда, электронов для п-канала или отверстия для р-канала, через полупроводящий канал сток-исток. Электрод затвора помещен на вершине очень тонким изолирующим слоем, и есть пара небольших областей п-типа только под сток и исток электродов.

При помощи изолированного устройства затвора для МОП-транзистора никаких ограничений не применяется. Поэтому можно соединять с затвором полевого МОП-транзистора источник сигнала в любой полярности (положительный или отрицательной). Стоит отметить, что чаще встречаются импортные транзисторы, нежели их отечественные аналоги.

Это делает MOSFET устройства особенно ценными в качестве электронных переключателей или логических приборов, потому что без воздействия извне они, как правило, не проводят ток. И причина этому высокое входное сопротивление затвора. Следовательно, очень маленький или несущественный контроль необходим для МОП-транзисторов. Ведь они представляют собой устройства, управляемые извне напряжением.

Типы МОП-транзистора (MOSFET)

Принцип работы МОП-транзистора (MOSFET) - изображение 3

На основе режима эксплуатации МОП-транзисторы можно разделить на два типа.

  • Режим насыщения
  • Режим истощения

Режим насыщения

В этом режиме отсутствует проводимость при нулевом напряжении, что означает, что оно по умолчанию закрыто или «ВЫКЛ», так как канал отсутствует. Когда напряжение затвора увеличивается больше, чем напряжение источника, носители заряда (дырки) смещаются, оставляя позади электроны, и, таким образом, устанавливается более широкий канал.

Напряжение на затворе прямо пропорционально току, то есть с увеличением напряжения на затворе ток увеличивается и наоборот.

Классификация режима насыщения МОП- транзисторов

Усовершенствованные МОП-транзисторы можно классифицировать на два типа в зависимости от типа используемого легированного субстрата (n-типа или p-типа).

  • N-канальный тип насыщения MOSFET
  • P-канальный тип насыщения MOSFET

N-канальный тип насыщения MOSFET

Типы МОП-транзистора (MOSFET) - фотография 4

  • Слегка легированная субстрат P-типа образует корпус устройства, а исток и сток сильно легированы примесями N-типа.
  • N-канал имеет электроны в качестве основных носителей.
  • Подаваемое напряжение затвора положительно для включения устройства.
  • Он имеет более низкую собственную емкость и меньшую площадь соединения из-за высокой подвижности электронов, что позволяет ему работать на высоких скоростях переключения.
  • Он содержит положительно заряженные примеси, что делает преждевременным включение полевых МОП-транзисторов с N-каналом.
  • Сопротивление дренажу низкое по сравнению с P-типом.
Смотрите также:   Обозначение светодиодов и других диодов на схеме

P-канальный тип насыщения MOSFET

Символ на схеме разных типов МОП-транзистора (MOSFET) - изображение 5

  • Слегка легированная подложка N-типа образует корпус устройства, а исток и сток сильно легированы примесями P-типа.
  • P-канал имеет отверстия в качестве основных носителей.
  • Он имеет более высокую внутреннюю емкость и малую подвижность отверстий, что делает его работающим при низкой скорости переключения по сравнению с N-типом.
  • Подаваемое напряжение затвора является отрицательным для включения устройства.
  • Водостойкость выше по сравнению с N-типом.

Режим истощения

В этом типе канал уже установлен, и очевидно, что проводимость происходит даже при нулевом напряжении, и он открыт или включен по умолчанию. В отличие от типа насыщения, здесь канал лишен носителей заряда, чтобы уменьшить ширину канала.

Применение МОП-транзистора - фото 6

Напряжение на затворе обратно пропорционально току, т. Е. С увеличением напряжения на затворе ток уменьшается.

Классификация режима истощения МОП-транзисторов

Истощающие МОП-транзисторы могут быть классифицированы на два типа в зависимости от типа используемого легированного субстрата (n-типа или p-типа).

  • Тип истощения канала N МОП-транзистор
  • Тип истощения канала P МОП-транзистор

Тип истощения канала N МОП-транзистор

Преимущества МОП-транзистора - изображение 7

  • Полупроводник P-типа образует подложку, а исток и сток сильно легированы примесями N-типа.
  • Применяемое напряжение на затворе отрицательное.
  • Канал обеднен свободными электронами.

Тип канала истощения канала MOSFET

Недостатки МОП-транзистора - фотография 8

  • Полупроводник N-типа образует подложку, а исток и сток сильно легированы примесями N-типа.
  • Поданное напряжение затвора положительное.
  • Канал обеднен свободными отверстиями.

Режим истощения МОП-транзистора

тестер транзисторов

Режим истощения встречается значительно реже, нежели режимы усиления без приложения напряжения смещения к затвору. То есть, канал проводит при нулевом напряжении на затворе, следовательно, прибор «нормально закрыт». На схемах используется сплошная линия для обозначения нормально замкнутого проводящего канала.

Для п-канального МОП-транзистора истощения, отрицательное напряжение затвор-исток отрицательное, будет истощать (отсюда название) проводящий канал своих свободных электронов транзистора. Аналогично для р-канального МОП-транзистора обеднение положительного напряжения затвор-исток, будет истощать канал своих свободных дырок, переведя устройство в непроводящее состояние. А вот прозвонка транзистора не зависит от того, какой режим работы.

Другими словами, для режима истощения п-канального МОП-транзистора:

  1. Положительное напряжение на стоке означает большее количество электронов и тока.
  2. Отрицательное напряжение означает меньше электронов и ток.

Обратные утверждения также верны и для транзисторов р-канала. Тогда режим истощения МОП-транзистора эквивалентно «нормально разомкнутому» переключателю.

N-канальный МОП-транзистор в режиме истощения

Режим истощения МОП-транзистора построен таким же образом, как и у полевых транзисторов. Причем канал сток-исток – это проводящий слой с электронами и дырками, который присутствует в п-типа или р-типа каналах. Такое легирование канала создает проводящий путь низкого сопротивления между стоком и источника с нулевым напряжением. Используя тестер транзисторов, можно провести замеры токов и напряжений на его выходе и входе.

Режим усиления МОП-транзистора

прозвонка транзистора

Более распространенным у транзисторов MOSFET является режим усиления, он обратный для режима истощения. Здесь проводящий канал слаболегированный или даже нелегированный, что делает его непроводящим. Это приводит к тому, что устройство в режиме покоя не проводит ток (когда напряжение смещения затвора равно нулю). На схемах для обозначения МОП-транзисторов такого типа используют ломаную линию, чтобы обозначить нормально открытый токоизолирующий канал.

Для повышения N-канального МОП-транзистора ток стока будет течь только тогда, когда напряжение на затворе прикладывается к затвору больше, чем пороговое напряжение. При подаче положительного напряжения на затвор к п-типа MOSFET (что это, режимы работы, схемы включения, описаны в статье) привлекает большее количество электронов в направлении оксидного слоя вокруг затвора, тем самым увеличивая усиление (отсюда название) толщины канала, позволяя свободнее протекать току.

Особенности режима усиления

отечественные транзисторы

Увеличение положительного напряжения затвора вызовет появление сопротивления в канале. Это не покажет тестер транзисторов, он может только проверить целостность переходов. Чтобы уменьшить дальнейший рост, нужно увеличить тока стока. Другими словами, для режима усиления п-канального МОП-транзистора:

  1. Положительный сигнал транзистор переводит в проводящий режим.
  2. Отсутствие сигнала или же его отрицательное значение переводит в непроводящий режим транзистор. Следовательно, в режиме усиления МОП-транзистор эквивалентен «нормально разомкнутому» переключателю.

Обратные утверждения справедливы для режимов усиления р-канальных МОП-транзисторов. При нулевом напряжении устройство в режиме «Выкл» и канал открыт. Применение напряжения отрицательного значения к затвору р-типа у MOSFET увеличивает проводимость каналов, переводя его режим «Вкл». Проверить можно, используя тестер (цифровой или стрелочный). Тогда для режима усиления р-канального МОП-транзистора:

  1. Положительный сигнал переводит транзистор «Выкл».
  2. Отрицательный включает транзистор в режим «Вкл».

Режим усиления N-канального МОП-транзистора

импортные транзисторы

В режиме усиления МОП-транзисторы имеют низкое входное сопротивление в проводящем режиме и чрезвычайно высокое в непроводящем. Также их бесконечно высокое входное сопротивление из-за их изолированного затвора. Режима усиления транзисторов используется в интегральных схемах для получения типа КМОП логических вентилей и коммутации силовых цепей в форме, как PMOS (P-канал) и NMOS (N-канал) входов. CMOS – это комплементарный МОП в том смысле, что это логическое устройство имеет как PMOS, так и NMOS в своей конструкции.

Графические обозначения транзисторов на схемах

Линия между соединениями стока и истока представляет собой полупроводниковый канал. Если на схеме, на которой изображены MOSFET транзисторы, она представлена жирной сплошной линией, то элемент работает в режиме истощения. Так как ток из стока может протекать с нулевым потенциалом затвора. Если линия канала показана пунктиром или ломанной, то транзистор работает в режиме насыщения, так как течет ток с нулевым потенциалом затвора. Направление стрелки указывает на проводящий канал, р-типа или полупроводниковый прибор п-типа. Причем отечественные транзисторы обозначаются точно так же, как и зарубежные аналоги.

Смотрите также:   Выпрямление переменного тока: виды, схемы, диоды для выпрямления

Символ на схеме разных типов МОП-транзистора (MOSFET)

Символы различных типов МОП-транзисторов изображены ниже.

Mosfet - что это такое? Применение и проверка транзисторов - фотография 9

Отличие униполярных транзисторов от биполярных

МОП-транзистор управляется электрополем, которое создается напряжением, приложенным к затвору относительно истока. Полярность прилагаемого напряжения определяется видом канала транзистора (p или n). В отличие униполярных биполярные транзисторы управляются электрическим током. Ток во всех типах этих полупроводников формируется двумя типами зарядов – электронами и дырками.

Полевые (униполярные) транзисторы в отличие от биполярных обладают меньшими собственными шумами в низкочастотном диапазоне. Это свойство обеспечивает их эффективную работу в звукоусилительных устройствах. MOSFET применяют в микросхемах низкочастотных усилителей в автомобильных проигрывателях.

Отличия МОСФЕТ от полевых транзисторов

mosfet транзисторы

Основное отличие от полевых в том, что МОП-транзисторы выпускаются в двух основных формах:

  1. Истощение – транзистор требует напряжения затвор-исток для переключения устройства в положение «Откл». Режим истощения МОП-транзистора эквивалентно «нормально закрытому» переключателю.
  2. Насыщение – транзистор требует напряжения затвор-исток, чтобы включить устройство. Режим усиления МОП-транзистора эквивалентно коммутатору с «нормально замкнутыми» контактами.

Базовая структура MOSFET транзистора

тестер цифровой

Конструкция MOSFET (что это, рассказано в статье подробно) очень отличается от полевых. Оба типа транзисторов используют электрическое поле, создаваемое напряжением на затворе. Чтобы изменить поток носителей заряда, электронов для п-канала или отверстия для р-канала, через полупроводящий канал сток-исток. Электрод затвора помещен на вершине очень тонким изолирующим слоем, и есть пара небольших областей п-типа только под сток и исток электродов.

При помощи изолированного устройства затвора для МОП-транзистора никаких ограничений не применяется. Поэтому можно соединять с затвором полевого МОП-транзистора источник сигнала в любой полярности (положительный или отрицательной). Стоит отметить, что чаще встречаются импортные транзисторы, нежели их отечественные аналоги.

Это делает MOSFET устройства особенно ценными в качестве электронных переключателей или логических приборов, потому что без воздействия извне они, как правило, не проводят ток. И причина этому высокое входное сопротивление затвора. Следовательно, очень маленький или несущественный контроль необходим для МОП-транзисторов. Ведь они представляют собой устройства, управляемые извне напряжением.

Усилитель на MOSFET

Так же, как и полевые, транзисторы MOSFET могут быть использованы для изготовления усилителей класса «А». Схемы усилителей с N-канальным МОП-транзистором общего исходного режима усиления, является наиболее популярной. На МОП-транзисторах усилители в режиме обеднения очень похожи на схемы с использованием полевых приборов, за исключением того, что MOSFET (что это, и какие типы бывают, рассмотрено выше) имеет более высокий входной импеданс.

полевые транзисторы mosfet

Этот импеданс управляется по входу смещающей резистивной цепью, образованной резисторами R1 и R2. Кроме того, выходной сигнал для общего источника усилителя на транзисторах MOSFET в режиме усиления инвертируется, потому что, когда входное напряжение низкое, то переход транзистора разомкнут. Это можно проверить, имея в арсенале только лишь тестер (цифровой или даже стрелочный). При высоком входном напряжении транзистор во включенном режиме, на выходе напряжение крайне низкое.

Принцип работы МОП-транзисторов на примере прибора с n-проводимостью

В схему униполярного транзистора с изолированным затвором и n-проводимостью входят:

Кремниевая подложка. В подложке n-типа в узлах кристаллической решетки кремния присутствуют отрицательно заряженные атомы и свободные электроны, что достигается введением специальных примесей.

Диэлектрик. Служит для изоляции кремниевой подложки от электрода затвора. В качестве диэлектрика используется оксид кремния.

В большинстве MOSFET исток транзистора подключается к полупроводниковой подложке. Между стоком и истоком формируется «паразитный» диод. Ликвидировать отрицательные последствия появления такого диода и даже использовать в положительных целях позволяет его подключение анодом к истоку в n-канальных полевых транзисторах, анодом к стоку – в p-канальных приборах.

Принцип работы:

  1. Между затвором и истоком прикладывается плюсовое напряжение к затвору.
  2. Между металлическим выводом затвора и подложкой появляется электрическое поле.
  3. Электрическое поле притягивает к приповерхностному слою диэлектрика свободные электроны, ранее распределенные в кремниевой подложке.
  4. В приповерхностном слое появляется область проводимости (канал) n-типа, состоящая из свободных электронов.
  5. Между выводами стока и истока появляется «мост», проводящий электрический ток.
  6. Проводимость полевого транзистора регулируется величиной внешнего управляющего напряжения. При его снятии проводящий «мостик» исчезнет и прибор закроется.

Аналогично работает МОП-транзистор p-типа. Показанный выше принцип работы является упрощенным. Приборы, используемые на практике в схемотехнике, имеют более сложное устройство и, следовательно, более сложный принцип работы.

Преимущества и недостатки МОП-транзисторов

Униполярные транзисторы имеют довольно широкое распространение в современной системотехнике благодаря ряду преимуществ, среди которых:

  • возможность мгновенного переключения;
  • отсутствие вторичного пробоя;
  • хорошая эффективность работы при низких напряжениях;
  • стабильность при температурных колебаниях;
  • низкий уровень шума при работе;
  • большой коэффициент усиления сигнала;
  • экономичность в плане энергопотребления;
  • меньшее количество технологических операций при построении схем с использованием МОП-транзисторов по сравнению с применением биполярных приборов.
Смотрите также:   Как пользоваться мультиметром: проводим измерения

Применение этих приборов ограничивают следующие недостатки:

Важнейший минус – повышенная чувствительность к статическому электричеству. Тонкий слой оксида кремния легко повреждается электростатическими зарядами, поэтому МОП-приборы могут выйти из строя даже при прикосновении к прибору наэлектризованными руками. Современные устройства практически лишены этого недостатка благодаря корпусам, способным минимизировать воздействие статики. Также в них могут интегрироваться защитные устройства по типу стабилитронов.

Появление нестабильности работы при напряжении перегрузки.

Разрушение структуры, начиная от температуры +150 °C. У биполярных приборов критической является температура +200 °C.

Постоянный поиск по получению хороших эксплуатационных свойств высокомощных униполярных транзисторов привел к изобретению гибридного IGBT-транзистора. Эти устройства объединили лучшие качества биполярного и полевых транзисторов.

Применение МОП-транзистора

  • Усилители MOSFET широко используются в радиочастотных приложениях.
  • Он действует как пассивный элемент, такой как резистор, конденсатор и индуктор.
  • Двигатели постоянного тока могут регулироваться силовыми полевыми МОП-транзисторами.
  • Высокая скорость переключения MOSFET делает его идеальным выбором при проектировании цепей прерывателей.

Проверка полевого MOSFET транзистора цифровым мультиметром

Для примера возьмем полевой МОП-транзистор с каналом n-типа IRF 640. Условно-графическое обозначение такого транзистора и его цоколевку вы видите на следующем рисунке.

Перед началом проверки транзистора замкните все его выводы между собой, что бы снять возможный заряд с транзистора.

Проверка встроенного диода

Для начал следует подготовить мультимер и перевести его в режим проверки диодов. Для этого переключатель режимов/пределов установите в положение с изображением диода.

В этом режиме мультиметр при подключении диода в прямом направлении (плюс прибора на анод, минус прибора на катод) показывает падение напряжения на p-n переходе диода. При включении диода в обратном направлении мультиметр показывает «1».

Итак, подключаем щупы мультиметра, как было сказано выше, в прямом включении диода. Таким образом, красный шум (+) подключаем на исток, а черный (-) на сток.

Мультиметр должен показать падение напряжение на переходе порядка 0,5-0,7.

Меняем полярность подключения встроенного диода, при этом мультиметр, при исправности диода покажет «1».

Проверка работы полевого МОП транзистора

Проверяемый нами МОП-транзистор имеет канал n-типа, поэтому, что бы канал стал электропроводен необходимо на затвор транзистора относительно истока либо стока подать положительный потенциал. При этом электроны из подложки переместятся в канал, а дырки будут вытолкнуты из канала. В результате канал между истоком и стоком станет электропроводен и через транзистор потечет ток.

Для открытия транзистора будет достаточно напряжения на щупах мультиметра в режиме прозвонки диодов.

Поэтому черный (отрицательный) щуп мультиметра подключаем на исток (или сток), а красным касаемся затвора.

Если транзистор исправен, то канал исток-сток станет электропроводным, то есть транзистор откроется.

Теперь если прозвонить канал исток-сток, то мультиметр покажет какое-то значение падение напряжения на канале, в виду того, что через транзистор потечет ток.

Таким образом черный щуп транзистора ставим на исток, а красный на сток и мультиметр покажет падение напряжение на канале. Если поменять полярность щупов, то показания мультиметра будут примерно одинаковыми.

Что бы закрыть транзистор достаточно относительно истока на затвор подать отрицательный потенциал.

Следовательно, подключаем положительный (красный) щуп мультиметра на исток, а черным касаемся затвор.

При этом исправный транзистор закроется. И если после этого прозвонить канал исток-сток, то мультиметр покажет лишь падение напряжения на встроенном диоде.

Если транзистор управляется напряжением с мультиметра (то есть открывается и закрывается), значит можно сделать вывод, что транзистор исправен.

Проверка полевого МОП – транзистора с каналом p-типа осуществляется подобным образом. За тем исключением, что во всех пунктах проверки полярность подключения щупов меняется на противоположную.

Более подробно и просто всю методику проверки полевого транзистора я изложил в следующем видеоуроке:

Подведем итог

Многие из вышеупомянутых фактов касаются исторической основы обоих устройств. Достижения и технологические прорывы в разработке нового оборудования, а также использование новых материалов, таких как карбид кремния (SiC), привели к значительному улучшению производительности этих радиодеталей за последние годы.

МОП-транзистор: 

  • Высокая частота переключения.
  • Лучшие динамические параметры и более низкое энергопотребление драйвера.
  • Более низкая емкость затвора.
  • Более низкое термосопротивление, которое приводит к лучшему рассеиванию мощности.
  • Более короткое время нарастания и спада, что означает способность работать на более высоких частотах.

IGBT модуль: 

  • Улучшенная технология производства, которая приводит к снижению затрат.
  • Лучшая устойчивость к перегрузкам.
  • Улучшенная способность распараллеливания схемы.
  • Более быстрое и плавное включение и выключение.
  • Снижение потерь при включении и при переключении.
  • Снижение входной мощности.

В любом случае модули MOSFET и IGBT быстро заменяют большинство старых полупроводниковых и механических устройств, используемых для управления током. Силовые устройства на основе SiC демонстрируют такие преимущества как меньшие потери, меньшие размеры и более высокая эффективность. Подобные инновации будут продолжать расширять пределы использования MOSFET и IGBT транзисторов для схем с более высоким напряжением и большей мощностью.

 

Источники
  • https://FB.ru/article/250083/mosfet—chto-eto-takoe-primenenie-i-proverka-tranzistorov
  • https://te4h.ru/chto-takoe-mosfety
  • https://principraboty.ru/mosfet-tranzistory-princip-raboty/
  • https://www.RadioElementy.ru/articles/printsip-raboty-polevogo-mop-tranzistora/
  • http://www.sxemotehnika.ru/zhurnal/kak-proverit-polevoi-mop-mosfet-tranzistor-tcifrovym-multimetrom.html
  • https://radioskot.ru/publ/nachinajushhim/mosfet_tranzistory_protiv_igbt/5-1-0-1457

Помогла ли вам статья?

Рейтинг
( Пока оценок нет )
Библиотека радиолюбителя
Adblock
detector