О блокинг генераторе: принцип работы и устройство прибора

Блокинг-генератор

Блокинг-генератор — это генератор импульсов сравнительно небольшой длительности  и большого периода. Он работает благодаря трансформаторной обратной связи. Из-за простоты блокинг-генератор широко применяют в компактных преобразователях напряжения (например в каждой второй схеме электронной зажигалки можно встретить эту схему).

Вот это блокинг-генератор(одна из многих вариаций этой схемы):

О блокинг генераторе: принцип работы и устройство прибора

Как видите, он реально прост в сборке. Самая сложная часть в нем — это трансформатор.Но обо всем по порядку.

1) Принцип работы

Сначала обмотка 2 работает как «резистор», т.е. через нее и резистор протекает ток, который начинает открывать транзистор. Открывание транзистора приводит к появлению тока в обмотке 1, а это в свою очередь приводит к появлению напряжения на обмотке 2, т.е. напряжение на базе транзистора увеличивается еще, он открывается еще больше, и так происходит до тех пор, пока сердечник или транзистор не войдет в насыщение. Когда это произошло, ток через обмотку 1 начинает уменьшаться, следовательно напряжение на обмотке 2 меняет полярность, что приводит к закрыванию транзистора. Все, цикл замкнулся!

2) Детали

Трансформатор обмотка 1 обычно в 2 раза больше обмотки 2, а число витков и диаметр провода подбираются в зависимости от напряжения на обмотке 3 и тока через нее.

Резистор обычно берут в пределах 1кОм — 4,7кОм.

Транзистор подойдет почти любой.

3) Тест

Сначала соберем базовую схему генератора. Трансформатор вот такой от балласта энергосберегающей лампы:

О блокинг генераторе: принцип работы и устройство прибора

На нем я намотал сначала обмотку 2 (18 витков проводом 0,4мм)

О блокинг генераторе: принцип работы и устройство прибора

Изолировал ее (подойдет обычная изолента)

О блокинг генераторе: принцип работы и устройство прибора

А потом намотал и обмотку 1 (36 витков тем же проводом, что и 2-ую)

О блокинг генераторе: принцип работы и устройство прибора

И наконец, вставил сердечник и зафиксировал его той же изолентой

О блокинг генераторе: принцип работы и устройство прибора

На этом трансформатор готов.

Транзистор я выбрал мощный: кт805, потому что в обмотке всего 36 витков не самого тонкого провода(малое сопротивление).

Резистор 2,2кОм.

Вот что у меня в итоге получилось:

О блокинг генераторе: принцип работы и устройство прибора

Питание, как вы поняли, я буду брать от кроны.

Итак, с транзистором кт805, резистором 2,2кОм и обмоткой 1 в 2 раза больше обмотки 2, осциллограмма напряжения между коллектором и эмиттером выглядит так:

О блокинг генераторе: принцип работы и устройство прибора

Амплитуда 60В, частота около 170кГц.

Теперь поставим резистор на 4,7кОм. Осциллограмма выглядит так:

Амплитуда около 10В, частота такая же.

Поставим теперь резистор 1кОм:

О блокинг генераторе: принцип работы и устройство прибора

Амплитуда 120В, частота около 140кГц.

Теперь поставим обратно резистор 2,2кОм, и поменяем местами обмотки:

О блокинг генераторе: принцип работы и устройство прибора

Амплитуда 80В, частота около 250кГц.

4) Вывод

Чем больше коэффициент обратной связи, тем быстрее нарастает сигнал, и частота выше.(чем меньше резистор, и больше соотношение число витков обмотки 2/число витков обмотки 1, тем больше коэффициент ОС).Еще на ОС влияет коэффициент усиления транзистора.

5) Практическая польза

Вы наверняка заметили, что я ни слова не сказал про обмотку 3. Она нужна для того, чтобы снять выходное напряжение.

Давайте посмотрим что будет, если намотать в обмотку 3 100 витков провода 0,08мм:

Сначала нам, конечно, нужно домотать трансформатор. Изолируем в прошлом последний слой:

О блокинг генераторе: принцип работы и устройство прибора

Теперь наматываем 100 витков провода 0,08. Собираем сердечник. НА ВЫХОД ЦЕПЛЯЕМ ДИОД (можно любой с обратным напряжением не менее 200В. Например я взял дешевый и распространенный 1n4007). Спаиваем схему:

О блокинг генераторе: принцип работы и устройство прибора

Диод нужен для отсекания отрицательных выбросов. Смотрим осциллограмму на выходе:

О блокинг генераторе: принцип работы и устройство прибора

Постоянная составляющая 50В, импульсы амплитудой 50В. Чтобы убрать импульсную составляющую, поставим конденсатор на выходе. Подойдет 0,1мкФ:

О блокинг генераторе: принцип работы и устройство прибора

Осциллограма:

О блокинг генераторе: принцип работы и устройство прибора

Постоянное напряжение амплитудой 100В.

При приближении:

О блокинг генераторе: принцип работы и устройство прибора

Небольшие колебания амплитудой 50мВ.

И наконец, полная схема:

О блокинг генераторе: принцип работы и устройство прибора

Если генерации нет, впаяйте параллельно резистору конденсатор на пару микрофарад.

Принцип работы

По своей сути, блокинг генератор является усилителем (генератором), собранным на базе транзисторов, расположенных в один каскад. Область применения узка: источник внушительных, но скоротечных по времени (продолжительность от тысячных долей до нескольких десятков мкс) сигналов-импульсов с большой индуктивной плюсовой обратной связью. Скважность – больше 10 и может доходить до нескольких десятков тысяч в относительных величинах. Наблюдается серьезная резкость фронтов, по своей форме практически не отличающихся от геометрически правильных прямоугольников.

Смотрите также:   Источник тока: виды и типы, какие бывают, примеры источников тока

Усилитель, используемый для изготовления блокинг-генератора, находится в открытом положении исключительно в период формирования сигнала-импульса. На всё остальное время – закрывается. Отсюда следует, что при большой величине отношения периода повторения импульсов к их длительности усилительный элемент находится в открытом положении существенно меньшее количество времени, чем в закрытом. У усилителя существует тепловой режим. В данном случае он напрямую связан со средней мощностью, отдающейся коллектором. За счёт высокой величины скважности при работе устройства получают существенную мощность в течение сигнала малой мощности.

Принципиальная схема для сборки блокинг-генератора

Существенная величина скважности блокинг-генератора позволяет ему работать в экономичном режиме, т.к. энергия требуется усилителю только во время открытого положения (время формирования сигнала). Основные режимы работы: автоколебательный и ждущий. Рассмотрим их подробнее.

Автоколебательный режим

Чаще всего блокинг-генератор собирается на усилительных элементах – транзисторах, включаемых по двум основным схемам:

  • с общим эмиттером;
  • с общей базой.

Первая встречается чаще, т.к., имея меньшую длительность фронта, есть возможность сгенерировать предпочтительную форму сигналов. Вторая схема менее подвержена колебаниям характеристик усилителей.

Автоколебательный режим

Рабочий процесс рассматриваемого устройства делится на 2 стадии:

  • закрытое положение транзистора, занимает основное время периода колебаний;
  • транзистор в открытом положении, сигнал-импульс проходит стадию формирования.

У конденсатора С1 происходит заряд током источника в течение образования импульса. За счёт этого С1 обеспечивает закрытое положение усилительного элемента. Во время данной стадии у конденсатора С1 происходит неспешная разрядка через существенное сопротивление резистора R1. При этом на базе диода VT1 создается около нулевой потенциал, что не позволяет ему открыться.

При достижении порога напряжения открытия у усилительного элемента происходит процесс открывания, и сквозь обмотку I, называющуюся коллекторной, трансформатора Т потечёт ток. В этот момент в основной или базовой обмотке II происходит индукция потенциала. Полярность должна быть такова, чтобы образующееся на базе транзистора напряжение имело положительную полярность. В случае ошибочного подключения обмоток трансформатора устройство генерировать сигналы не будет. В этом случае требуется переподключить концы одной из обмоток. Блокинг-генератор заработает.

Важно! Обвальное развитие процесса открытия транзистора имеет название прямого блокинг-процесса.

В I обмотке трансформатора появляется положительное напряжение, что ведёт к возрастанию различных токов и, следовательно, продолжению снижения напряжения коллектора и базы усилителя. Совершается резкое нарастание коллекторного тока и напряжения на усилительном элементе. В следующий момент напряжение падает почти до нуля, и устройство переходит в режим насыщения.

Важно! Обвальное развитие процесса закрытия транзистора имеет название обратного блокинг-процесса.

Открытие усилителя происходит практически мгновенно, поэтому в течение всего этого времени потенциал конденсатора С1 и величина энергии в трансформаторе практически не претерпевают изменений. Фронт импульса сформирован.  Происходит образование вершины импульса, конденсатор С1 начинает заряжаться.

Выход усилительного элемента из режима насыщения означает, что ток у коллектора опять начинает зависеть от количества накопленного в базе транзистора заряда, а базовый ток уменьшается. Усилительные свойства транзистора начинают восстановление. В этот момент в первичной обмотке трансформатора формируется отрицательное относительно транзистора напряжение. Данный процесс ведёт к продолжению уменьшения коллекторного тока. Происходит формирование среза импульса.

Усилительный элемент находится в закрытом положении.  Происходит переход в исходное состояние. Физическая суть сводится к рассеянию энергии, появившейся за период появления сигнала-импульса в различных реактивных частях схемы. Так как здесь разность потенциалов на конденсаторе и величина энергии в трансформаторе не изменились, то закрытие транзистора провоцирует рост напряжения на коллекторе. В этот момент у блокинг-генератора происходит выброс напряжения. В некоторых случаях появляются паразитные колебания.

Смотрите также:   Цветомузыка своими руками: как сделать и подключить схему на светодиодах 12 вольт

Ти » (3 – 5) R1С1 – таким выражением характеризуется автоколебательный режим.

Ждущий режим

При ждущем режиме работы рассматриваемого устройства генерация сигналов происходит только с помощью внешнего воздействия – на вход необходимо подать произвольные запускающие импульсы.

Ждущий режим работы

В начальном состоянии усилительный элемент закрывается отрицательным смещением на базе, и лавинообразное развитие процесса открытия транзистора начнется исключительно только после подачи противоположного по знаку импульса соответствующей амплитуды на базу.

Появление импульса происходит по полной аналогии автоколебательного режима, рассмотренного выше. Конденсатор С1 разряжается до изначального напряжения базы. Далее транзистор остается в закрытом состоянии до появления последующего запускающего импульса. Длительность сигналов, а также их форма, исходящих от рассматриваемого устройства, находятся в полной зависимости от параметров собранной схемы.

Чтобы цепь запуска не оказывала никакого воздействия на работу находящего в ждущем режиме блокинг-генератора, в представленной схеме присутствует специальный разделительный диод VD2. Его задачей является закрытие сразу за окончанием процесса открывания транзистора. Это действие обрывает связь между внешним источником и интересующим нас устройством. Допускается добавлять в расчёт представленной схемы эмиттерный повторитель.

Таким образом, подытоживаем принцип работы блокинг генератора на полевом транзисторе: если при исчезновении напряжения на базе транзистора условия, требуемые для повторения цикла без внешнего воздействия, не исполняются, то этот режим работы называется ждущим. Если же при исчезновении напряжения там же начинается новый цикл по образованию нового импульса без привлечения внешнего источника, то режим работы схемы автоколебательный.

Расчёт

Принцип работы синхронного генератора

Принцип работы блокинг генератора понятен. Ниже приведён расчёт, который поможет правильно выбрать транзистор второй принципиальной схемы.

Для примера использованы следующие исходные параметры:

  • частота (Ч) – 40 кГц;
  • скважность (С) – 0,25;
  • амплитуда (АМ) – 6 V;
  • сопротивление Rнг (нагрузки) – 30 Ом;
  • напряжения на выходе источника питания (НП) – 300 V.

Допустимое напряжение базы-коллектора должно быть от 1,5 до 2 раз больше, чем НП. Для этого примера – от 450 до 600 V.

Ток коллектора (Iк) определяют по формуле:

Iк должен быть равен или больше чем ((3…5)*АМ*КТФ)/ Rнг.

КТФ – это коэффициент, который учитывает особенности трансформации энергии (коллекторная – нагрузочная обмотки):

КТФ=(1,2*АМ) / НП=(1,2*6)/300=0,024.

Таким образом, допустимый ток коллектора должен быть больше следующих величин:

((3…5)*6*0,024)/ 30 = 0,0144…0,024.

Максимальная частота (Чмакс, кГц) рассчитывается по следующей формуле:

Чмакс≥(5…8) * Ч = (5…8) * 40 = 200…320.

На основании полученных данных определяют тип транзистора.

Параметры подходящего условного прибора:

  • максимальное напряжение коллектор-база (НКБ) – 620 V;
  • максимальное напряжение база-эмиттер (НБЭ) – 8 V$
  • максимальный ток коллектора (Iк) – 0,03 А;
  • ток коллектор-база (Iкб) – 12 мкА;
  • максимальная частота (Чмакс) – 1000 кГц;
  • сопротивление базы (Rб) – 250 Ом.

Расчёт и практика позволяют собрать блокинг генератор своими руками

Чтобы создать блокинг генератор правильно, необходимо знать теорию и практику, уметь сделать расчёт.

Блокинг генератор для светодиода на одном транзисторе своими руками: схема с самозапиткой

Для тех из вас, кто не знает, о чем идёт речь, блокинг генератор — это крошечная схема с самозапиткой, которая позволит вам зажигать светодиоды от старых батареек, напряжение которых упало вплоть до 0.5 Вольт.

Вы думаете, что батарейка уже отжила свое? Подключите её к блокинг генератору и выжмите из неё всё до последней капли энергии своими руками!

Шаг 1: Компоненты и инструмент

Для проекта понадобится всего несколько вещей, которые видны на фотографии, но для тех из вас, кто любит читать, я приложу вариант списка в текстовом виде:

  • Паяльник
  • Припой
  • Светодиод
  • Транзистор 2N3904 или его эквивалент
  • Резистор 1К
  • Тороидная бусина
  • Тонкий провод, двух цветов

Если вы найдёте транзистор 2N4401 или BC337, то светодиод будет гореть ярче, так как они рассчитаны под большую силу тока.

Смотрите также:   Активная и реактивная мощность: определение, формулы, как найти - понятная информация для чайников

Шаг 2: Обмотайте тороид проводом

О блокинг генераторе: принцип работы и устройство прибора
О блокинг генераторе: принцип работы и устройство прибора
О блокинг генераторе: принцип работы и устройство прибора
О блокинг генераторе: принцип работы и устройство прибора

Сначала нужно обмотать проводом тороид. Свой я нашел в старом блоке питания. Тороиды похожи по форме на пончик и притягиваются магнитом.

Возьмите два провода, скрутите вместе их концы (вам необязательно делать так, но это немного упростит обмотку тороида).

Пропустите скрученные концы через тороид, затем возьмите два других (нескрученных конца) и обмотайте вокруг тороида. Не перекручивайте провода, убедитесь, что по всей обмотке нет места, где два повода с одинаковым цветом находятся рядом. В идеале нужно сделать 8-11 витков, находящихся на одинаковом расстоянии друг от друга и плотно прилегающих к тороиду. Как только вы завершите обмотку, отрежьте излишнюю длину провода, оставив около 5 см для соединения с другими компонентами схемы.

Снимите с концов проводов немного изоляции, затем возьмите по одному проводу с каждой стороны, убедившись что они разных цветов. Скрутите их и ваш тороид готов.

Шаг 3: Припаиваем компоненты





Пришло время спаять всё в одно устройство. Вы можете поместить всё на макетную плату, но в инструкции я решил собрать всё на коленке. Можете следовать текстовой инструкции или спаять всё по картинкам — там всё отлично отображено.

Сначала возьмите два внешних контакта транзистора и слегка отогните их наружу, а средний загните внутрь. Контакты светодиода также согните наружу. Это необязательный шаг, но он поможет проще спаять компоненты.

Возьмите один из проводов тороида, которые остались несоединёнными (всё правильно, один из нескрученных вместе проводов). Припаяйте его к одной из сторон резистора. Припаяйте другой конец резистора к среднему контакту транзистора.

Возьмите второй одиночный провод тороида и припаяйте его к коллектору транзистора. Припаяйте положительный контакт светодиода также к коллектору, а отрицательный контакт к эмиттеру.

Всё, что осталось сделать — это припаять удлинительный провод к отрицательному контакту светодиода. Возьмите кусок провода, который у вас был до этого, и припаяйте его к эмиттеру транзистора.

Шаг 4: Пробуем девайс в действии

О блокинг генераторе: принцип работы и устройство прибора
О блокинг генераторе: принцип работы и устройство прибора

Всё готово! Вы завершили ваш блокинг генератор на одном транзисторе. Приложите скрученные провода тороида к положительному контакту батарейки, а удлинительный провод к отрицательному контакту. Если всё собрано правильно, то светодиод загорится. Если светодиод не загорится, то попробуйте обмотать тороид более тонким проводом

Схема линейной модификации

Линейный блокинг-генератор в наше время используется в медицинском оборудовании. Отличие таких моделей заключается в том, что выпрямители у них устанавливаются высокой чувствительности. За счет этого частотность сигнала показывается очень точно. Дополнительно следует учитывать, что указанные модели обладают хорошей проводимостью. Для модификаций на 100 Гц конденсаторы используются закрытого типа.

При этом блоки питания чаще всего устанавливаются на 30 В. Параметр проводимости сигнала в данных блокинг-генераторах чаще всего колеблется в районе 3 мк. Однако модели на 120 Гц на рынке также представлены. В данном случае конденсаторы используются проходного типа, и напряжение они могут выдерживать 25 В. Показатель проводимости сигнала в такой ситуации зависит от типа выпрямителя.

Схема модели на 140 Гц

Данного типа блокинг-генератор (схема показана ниже) используется часто в бытовой технике. При этом для измерительных приборов он не подходит. Из недостатков устройства можно отметить малую чувствительность. Таким образом, информация часто получается неточной. Вспомогательные адаптеры в устройствах используются с различной пропускной способностью. Блоки питания в данном случае устанавливаются на 20 и 30В. Здесь преобразователи подходят только синхронного типа.

При этом инвертирующие модификации в наше время встречаются довольно редко. В среднем параметр проводимости блокинг-генераторов колеблется в районе 3 мк. Однако следует учитывать, что конденсаторы в системе используются различные. В зависимости от их типа показатель чувствительности может меняться.

Источники
  • https://cxem.net/beginner/beginner153.php
  • https://amperof.ru/elektropribory/bloking-generator-printsip-raboty.html
  • https://elquanta.ru/generatory/bloking-generator-princip.html
  • http://dmsht.ru/bloking-generator-odnom-tranzistore-2/
  • https://masterclub.online/topic/14737-bloking-generator
  • https://srub-brusa.ru/pribory-i-instrumenty/bloking-generator-na-odnom-tranzistore.html

Помогла ли вам статья?

Рейтинг
( Пока оценок нет )
Библиотека радиолюбителя
Adblock
detector