Электрическое напряжение-определение, объяснение простыми словами, единица измерения, формула

Что такое электричество.

Электричество – это совокупность физических явлений, связанных с возникновением, накоплением, взаимодействием и переносом электрического заряда. По мнению большинства историков науки, первые электрические явления были открыты древнегреческим философом Фалесом в седьмом веке до нашей эры. Фалес наблюдал действие статического электричества: притяжение к натертому шерстью янтарю легких предметов и частичек. Чтобы повторить этот опыт самостоятельно вам необходимо потереть о шерстяную или хлопковую ткань любой пластиковый предмет (например, ручку или линейку) и поднести его к мелконарезанным кусочкам бумаги.

статическим электричеством

Первой серьезной научной работой, в которой описаны исследования электрических явлений стал трактат английского ученого Уильяма Гилберта «О магните, магнитных телах и большом магните – Земле» изданный в 1600 г. В этой работе автор описал результаты своих опытов с магнитами и наэлектризованными телами. Здесь же впервые упоминается термин электричество.

Исследования У. Гилберта дали серьезный толчок развитию науки об электричестве и магнетизме: за период с начала 17 до конца 19 века было проведено большое количество экспериментов и сформулированы основные законы, описывающие электромагнитные явления. А в 1897 году английский физик Джозеф Томсон открыл электрон – элементарную заряженную частицу, которая определяет электрические и магнитные свойства вещества. Электрон (на древнегреческом языке электрон – это янтарь) имеет отрицательный заряд примерно равный 1,602*10-19 Кл (Кулона) и массу равную 9,109*10-31 кг. Благодаря электронам и другим заряженным частицам происходят электрические и магнитные процессы в веществах.

А напряжение?

Электрическое напряжение U является той самой причиной, которая “заставляет” протекать электрический ток I. Электрическое напряжение всегда возникает, когда заряды разделены друг от друга, то есть все отрицательные заряды на одной стороне, а все положительные – на другой. Если соединить эти две стороны электропроводящим материалом, потечет электрический ток.

Общепринятое определение термина “электрическое напряжение”.

Электрическое напряжение (или просто напряжение) – это разность потенциалов между двумя точками в электрическом поле. Это движущая сила для электрического заряда.

Потенциал в электрическом поле – это энергия заряженного тела, не зависящая от его электрического заряда. Для пояснения вы можете посмотреть на сравнение с водяным контуром чуть ниже в статье.

Есть другое определение (из учебника по физике 8 класса):

Напряжение – это физическая велuчuна, характеризующая электрическое поле. Электрическое напряжение между двумя точками электрического поля численно равно работе, совершенной при переносе между ними заряда 1 Кл силами электрического поля.

Сравнение с использованием модели протекания воды.

Хорошей аналогией, которая поможет вам представить себе электрическое напряжение и потенциал, является водяной контур. В этой схеме у вас есть два бассейна на разной высоте, которые соединены трубой. В этой трубе вода может перетекать из верхнего бассейна в нижний. Затем вода перекачивается обратно в верхний бассейн с помощью насоса, как показано на рисунке ниже.

Электрическое напряжение - сравнение с использованием модели протекания воды
Электрическое напряжение – сравнение с использованием модели протекания воды

В своих размышлениях вы теперь легко можете сравнить насос с источником электрического напряжения. Кроме того, поток воды можно сравнить с электрическим током. Насос транспортирует воду из нижнего бассейна в верхний. Оттуда она самостоятельно течет обратно в нижний бассейн. В данном примере насос является приводом для потока. Чем больше разница в высоте, тем сильнее поток. Решающим фактором является потенциальная энергия верхнего бассейна. Вы можете сравнить разность энергий двух бассейнов с разностью электрических потенциалов. Проще говоря, большая разница в высоте соответствует большему электрическому напряжению.

Смотрите также:   Как выбрать батарейку для устройства - основные виды и размеры батареек

Природа электрического напряжения

Для наглядной демонстрации происхождения напряжения в природе, на уроках физики проводят эксперимент с помощью электрофорной машинки (динамомашина).

При вращении диска между металлическими шариками проскакивает искра. Это и есть наглядное проявление природного феномена — электрического тока. Он возникает из-за разного количества отрицательно заряженных ионов на шариках, из-за чего возникает разность потенциалов, то есть факт, нарушающий основной закон Природы — сохранения энергии. Отрицательно заряженные частицы стремятся переместиться туда, где их меньше, тем самым обнулив разницу. Конечно же, электроны не проходят весь путь между заряженными шариками, называемых полюсами. Их пробег ограничивает кристаллическая решетка, узлов которой они не могут покинуть. Зато способны удариться о соседние частицы и передать импульс по цепочке дальше, создавая эффект домино.

Каждое такое соударение порождает выплеск энергии, из-за чего система переходит из состояния покоя в возбужденное, которое и принято называть электрическим напряжением.

В чем измеряется

Как обозначается напряжение в технической документации и на графических схемах? Единица измерения напряжения именуется вольт (В) по фамилии итальянского физика А. Вольта. Один вольт можно описать как потенциальную разницу двух точек поля, в котором с целью перемещения однокулонного заряда совершается работа в 1 джоуль.

Емкость конденсатора: единица измерения

Условное обозначение напряжения на схемах имеет вид заглавной латинской буквы V – символа единицы напряжения, заключенной в круг. Иногда вместо круга используется схематичное изображение измерительного прибора – вольтметра, идентифицируемое по литере V.

Важно! Если в некоторой сети имеется напряжение 220 В, это значит, что ее электрополе может затратить 220 джоулей с целью перемещения заряженных частиц через нагрузку и цепь. Для электрических приборов номинальное напряжение полагается обозначить в паспорте. Иногда оно указывается и в составе маркировки на передней панели корпуса (например, у счетчиков электроэнергии).

Формула

Формула для электрического напряжения U, согласно закона Ома для участка цепи, имеет вид

U = R * I .

Как видно из этой формулы, если электрическое напряжение остается неизменным, то чем больше электрическое сопротивление (R), тем меньше сила тока (I).

Другая формула для расчета электрического напряжения такова:

U = P / I .

То есть электрическое напряжение U равно мощности деленной на силу тока I.

Как измеряют напряжение

Напряжение измеряется с помощью прибора называемого вольтметром. Различные модели вольтметров могут внешне отличаться друг от друга, но общим для них является принцип работы, основанный на электромагнитном действии тока. Латинская буква V используется для обозначения прибора на электрических схемах и на измерительных шкалах вольтметров.

Обозначение вольтметра и схема включения вольтметра для измерения напряжения
Рис. 2. Обозначение вольтметра и схема включения вольтметра для измерения напряжения.

При проведении измерений необходимо учитывать следующие моменты:

  • Вольтметры для измерения постоянного напряжения отличаются от вольтметров, предназначенных для измерений переменного напряжения. У вольтметров для измерения постоянных напряжений на измерительной шкале должен присутствовать знак “—”, а для переменного напряжения знак “~”. В последнее время часто используется обозначение с помощью аббревиатур из букв английского алфавита AC/DC (Alternative Current — переменный ток, Direct Current — постоянный ток);
  • Клеммы вольтметров для постоянного напряжение помечены знаками “+” и “—” или выделены цветом (плюс — красный, минус — синий). При измерениях полярность следует соблюдать, иначе индикаторная стрелка отклонится в другую сторону;
  • Вольтметр всегда подключается параллельно к участку цепи, где производятся измерения;
  • Рекомендуется вначале провести монтаж всех элементов электрической цепи, а вольтметр подключать в самом конце.
Смотрите также:   Знакомство с микросхемой регистра сдвига 74HC595 - управление 16 светодиодами - 74HC595

Электрическое напряжение-определение, объяснение простыми словами, единица измерения, формула
Рис. 3. Примеры различных вольтметров

Все измерительные приборы не должны влиять на результат измерения, то есть должны иметь минимальную измерительную погрешность. Чтобы соответствовать этому требованию, вольтметры имеют очень большое входное сопротивление, поэтому ток, текущий через них, намного меньше тока на измеряемом участке цепи. Тогда падение напряжения на вольтметре становится не существенным.

Напряжение в цепях тока

Постоянного

Напряжение в цепи постоянного тока между точками A и B — работа, которую совершает электрическое поле при переносе пробного положительного заряда из точки A в точку B.

Переменного

Для описания цепей переменного тока применяются следующие напряжения:

  • мгновенное напряжение;
  • амплитудное значение напряжения;
  • среднее значение напряжения;
  • среднеквадратическое значение напряжения;
  • средневыпрямленное значение напряжения.

Мгновенное напряжение есть разность потенциалов между двумя точками, измеренная в данный момент времени. Зависит от времени (является функцией времени):

u=u(tu=u(t).

Амплитудное значение напряжения есть максимальное по модулю значение мгновенного напряжения за весь период колебаний:

UM=max(|u(tU_{M}=max(|u(t)|).

Для гармонических (синусоидальных) колебаний напряжения мгновенное значение напряжения выражается как:

u(t)=UMsin⁡(ωt+ϕu(t)=U_{M}sin(omega t+phi ).

Для сети переменного синусоидального напряжения со среднеквадратическим значением 220 В амплитудное напряжение равно приблизительно 311 В.

Амплитудное напряжение можно измерить с помощью осциллографа.

Среднее значение напряжения (постоянная составляющая напряжения) есть напряжение, определяемое за весь период колебаний, как:

Um=1T∫0Tu(t)dtU_{m}={frac {1}{T}}int _{0}^{T}u(t)dt.

Для синусоиды среднее значение напряжения равно нулю.

Среднеквадратическое значение напряжения (электротехнические наименования: действующее, эффективное) есть напряжение, определяемое за весь период колебаний, как:

Uq=1T∫0Tu2(t)dtU_{q}={sqrt {{frac {1}{T}}int limits _{0}^{T}u^{2}(t)dt}}.

Среднеквадратическое значение напряжения наиболее удобно для практических расчётов, так как на линейной активной нагрузке оно совершает ту же работу (например, лампа накаливания имеет ту же яркость свечения, нагревательный элемент выделяет столько же тепла), что и равное ему постоянное напряжение.

Для синусоидального напряжения справедливо равенство:

Uq=12UM≈0,707UM;UM=2Uq≈1,414UqU_{q}={1 over {sqrt {2}}}U_{M}approx 0,707U_{M};qquad U_{M}={sqrt {2}}U_{q}approx 1,414U_{q}.

В технике и быту при использовании переменного тока под термином «напряжение» имеется в виду именно среднеквадратическое значение напряжения, и все вольтметры проградуированы, исходя из его определения. Однако конструктивно большинство приборов фактически измеряют не среднеквадратическое, а средневыпрямленное (см. ниже) значение напряжения, поэтому для несинусоидального сигнала их показания могут отличаться от истинного значения.

Средневыпрямленное значение напряжения есть среднее значение модуля напряжения:

Um=1T∫0T|u(t)|dtU_{m}={frac {1}{T}}int limits _{0}^{T}|u(t)|dt.

Для синусоидального напряжения справедливо равенство:

Um=2πUM(≈0,637UM)=22πUq(≈0,9UqU_{m}={2 over pi }U_{M}(approx 0,637U_{M})={2{sqrt {2}} over pi }U_{q}(approx 0,9U_{q}).

На практике используется редко, однако большинство вольтметров переменного тока (те, в которых ток перед измерением выпрямляется) фактически измеряют именно эту величину, хотя их шкала и проградуирована по среднеквадратическим значениям.

Трёхфазного

В цепях трёхфазного тока различают фазное и линейное напряжения. Под фазным напряжением понимают среднеквадратичное значение напряжения на каждой из фаз нагрузки относительно нейтрали, а под линейным — напряжение между подводящими фазными проводами. При соединении нагрузки в треугольник фазное напряжение равно линейному, а при соединении в звезду (при симметричной нагрузке или при глухозаземлённой нейтрали) линейное напряжение в 3 раза больше фазного.

На практике напряжение трёхфазной сети обозначают дробью, в числителе которой стоит фазное при соединении в звезду (или, что то же самое, потенциал каждой из линий относительно земли), а в знаменателе — линейное напряжение. Так, в России наиболее распространены сети с напряжением 220/380 В; также иногда используются сети 127/220 В и 380/660 В.

Смотрите также:   Как читать электрические схемы: для начинающих новичков, учимся правильно разбираться, принципиальные проекты чертежей для чайников

Работа тока

Сразу введем новое определение.

Работа тока — это работа, которую совершают силы электрического поля, создающего электрический ток.

В процессе этой работы энергия электрического тока переходит в другие различные виды энергии (механическую, внутреннюю и др.). Более подробно мы говорили об этом, когда рассматривали действия тока.

От чего зависит работа тока?

Логично предположить, что работа тока будет зависеть от того, какой заряд протекает по цепи за определенное время. То есть, работа тока будет зависеть от силы тока.

Проверим это на простом опыте. Соберем цепь, состоящую из ключа, источника тока, амперметра и подключенной к проводам натянутой никелевой проволоки (рисунок 1).

Используя один источник тока, в цепи была определенная сила тока. Проволока нагрелась.

Если же мы заменим источник тока, который даст нам большую силу тока, чем предыдущий, то заметим определенные изменения. Наша проволока нагревается намного сильнее. Вот вам наглядное доказательство того, что тепловое действие (а значит, и работа тока) проявляется сильнее с увеличением силы тока в цепи.

Но дело в том, что сила тока — не единственная характеристика, от которой зависит работа тока. Другая (и не менее важная) величина называется электрическим напряжением или просто напряжением.

Связь работы тока и напряжения

Проведенные нами опыты объясняются следующим.

При одинаковой силе тока работа тока на этих участках цепи при перемещении электрического заряда, равного 1 Кл, различна.

Получается, что эта работа тока и определяет нашу новую физическую величину — электрическое напряжение.

Теперь мы может объяснить до конца наши опыты. Напряжение, которое создается батарейкой в первой цепи, меньше напряжение городской осветительной сети. Поэтому лампа, подключенная к сети, дает больше света и тепла. При этом сила тока в обеих цепях одинакова. Вся причина различий — в создаваемом напряжении.

Напряжение показывает, какую работу совершает электрическое поле при перемещении единичного положительного заряда из одной точки в другую.

Сопротивление

Ток, как правило, проходит через проводники с некоторой степенью трения или противодействия движению. Это противодействие движению правильнее называть сопротивлением. Величина тока в цепи зависит от величины напряжения и величины сопротивления в цепи, препятствующего прохождению тока. Как и напряжение, сопротивление – это величина, измеряемая между двумя точками. По этой причине величины напряжения и сопротивления часто указываются как «между» двумя точками в цепи.

Формула закона Ома

Основное открытие Ома заключалось в том, что величина электрического тока, протекающего через металлический проводник в цепи, при любой заданной температуре прямо пропорциональна напряжению, приложенному к нему. Ом выразил свое открытие в виде простого уравнения, описывающего взаимосвязь напряжения, тока и сопротивления:

[E=IR]

В этом алгебраическом выражении напряжение (E) равно току (I), умноженному на сопротивление (R). Используя алгебру, мы можем преобразовать это уравнение в других два варианта, решая его для I и R соответственно:

[I = frac{E}{R}]

[R =frac{E}{I}]

Источники
  • https://www.calc.ru/Napryazheniye-Toka.html
  • https://www.asutpp.ru/elektricheskoe-napryazhenie.html
  • https://Wika.TutorOnline.ru/fizika/class/8/elektricheskoe-napryazhenie
  • https://amperof.ru/teoriya/edinica-izmereniya-napryazheniya.html
  • https://obrazovaka.ru/fizika/edinica-izmereniya-napryazheniya.html
  • https://ru.wikipedia.org/wiki/%D0%AD%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%BE%D0%B5_%D0%BD%D0%B0%D0%BF%D1%80%D1%8F%D0%B6%D0%B5%D0%BD%D0%B8%D0%B5
  • https://obrazavr.ru/fizika/8-klass/elektricheskie-yavleniya/soprotivlenie-i-zakon-oma/elektricheskoe-napryazhenie-edinitsy-napryazheniya/
  • https://radioprog.ru/post/920

Помогла ли вам статья?

Рейтинг
( Пока оценок нет )
Библиотека радиолюбителя
Adblock
detector