Как понизить напряжение переменного и постоянного тока?

Содержание
  1. Виды резисторов
  2. Параметры резисторного элемента
  3. Что такое падение напряжения на резисторе
  4. Для чего нужен понижающий резистор АКПП
  5. Выход из строя понижающего резистора АКПП и способы устранения неисправности
  6. Понижение напряжения постоянного тока
  7. Понижение напряжения переменного тока
  8. С помощью трансформатора
  9. С помощью резистора
  10. Закон Ома для электрической цепи
  11. Характеристика мощности резистора
  12. Соединение резисторов
  13. Как рассчитать сопротивление гасящего резистора.
  14. Как рассчитать мощность гасящего резистора.
  15. Как рассчитать напряжение падения на сопротивлении.
  16. Как рассчитать ток потребляемый устройством или цепью.
  17. Как рассчитать мощность устройства в Вт.
  18. Как рассчитать длину радиоволны.
  19. Как рассчитать частоту радиосигнала.
  20. Как рассчитать номинальную выходную мощность звуковой частоты.
  21. Как рассчитать сопротивление двух параллельно включенных резисторов.
  22. Как рассчитать сопротивление более двух включенных параллельно резисторов.
  23. Как рассчитать емкость включенных параллельно двух или более конденсаторов.
  24. Как зависит падение напряжения на участке цепи от величины тока?
  25. Как рассчитать потери напряжения в линии?
  26. Почему происходит падение напряжения?
  27. Значение сопротивления
  28. Импеданс резистора

Виды резисторов

Резистор – инертный (пассивный) элемент цепи, у которого сопротивление может быть как постоянным, так и переменным. Это зависит от его конструкции. Он применяется для регулирования силы тока и напряжения в цепях, рассеивания мощности и иных ограничений. Дословный перевод с английского слова «резистор» – сопротивляюсь.

Общий вид элементов

Классификацию резисторов можно провести по следующим критериям:

  • назначение элемента;
  • тип изменения сопротивления;
  • материал изготовления;
  • вид проводника в элементе;
  • ВАХ – вольт-амперная характеристика;
  • способ монтажа.

Устройства делятся на элементы общего и специального назначения. У специальных деталей повышенные характеристики сопротивления, частоты, рабочего напряжения или особые требования к точности.

Тип изменения сопротивления делит их на постоянные и переменные. Переменные резисторы конструктивно отличаются не только от элементов, имеющих постоянное сопротивление, но и между собой. Они различны по конструкции: бывают регулировочные и подстроечные.

Регулировочные элементы переменного типа предназначены для частого изменения сопротивления. Это входит в процесс работы схемы устройства.

Подстроечный тип предназначен для того, чтобы выполнить подстройку и регулировку схемы при первичном запуске. После этого изменение положения регулятора не выполняют.

При изготовлении резистивных тел (рабочей поверхности) используются такие материалы, как:

  • графитовые смеси;
  • металлопленочные (окисные) ленты;
  • проволока;
  • композиционные компоненты.

Особое место занимают в этом ряду интегральные элементы. Это резисторы, выполненные в виде p-n перехода, который представляет собой зигзагообразный канал, интегрируемый в кристалл микросхемы.

Внимание! Интегральные элементы всегда отличаются повышенной нелинейностью своей ВАХ. Поэтому они применяются там, где использование других типов не представляется возможным.

Вид вольт-амперной характеристики делит рассматриваемые элементы на линейные и нелинейные. Особенность нелинейности заключается в том, что компонент меняет своё сопротивление в зависимости от следующих характеристик:

  • напряжения (варисторы);
  • температуры (терморезисторы);
  • уровня магнитного поля (магниторезисторы);
  • величины освещённости (фоторезисторы);
  • коэффициента деформации (тензорезисторы).

Нелинейность вольт-амперной характеристики расширило возможности их применения.

Способ монтажа может быть:

  • печатным;
  • навесным;
  • интегрированным.

При печатном монтаже выводы детали вставляются в отверстие на плате, после чего припаиваются к контактной дорожке панели. Такой способ установки автоматизирован, и пайка происходит путём погружения контактных площадок в ванну с припоем.

Навесной монтаж, в большинстве своём, ручной. Выводы соединяемых деталей сначала скручиваются между собой, потом спаиваются для улучшения контакта. Сама пайка не предназначена для выдерживания механических нагрузок.

Интегрированный монтаж проводится в процессе изготовления кристаллов микросхем.

Параметры резисторного элемента

При нанесении на схемы графического обозначения элемента сопротивления на нём указывается некоторые из его параметров.

К главным параметрам и элементарным характеристикам относятся:

  • номинальное значение сопротивления;
  • температурный коэффициент;
  • максимальная рассеиваемая мощность;
  • допустимое рабочее напряжение;
  • коэффициент шума;
  • относительное отклонение от номинала;
  • устойчивость элемента к высокой температуре и влажности.

На чертежах и схемах резистор обозначается буквой R, с нанесением его порядкового номера.

Что такое падение напряжения на резисторе

Электрический ток, проходя по цепи, испытывает сопротивление, которое может изменяться под воздействием разнообразных условий внешней среды (экстремально низкие температуры или нагрев) и может зависеть от характеристик конкретного проводника. Например, чем тоньше проводник или длиннее – тем оно выше.

На значение его величины влияют следующие факторы:

  • сила тока;
  • длина проводящих частей;
  • напряжение;
  • материал проводниковых элементов;
  • нагрев (температура);
  • площадь поперечного сечения.

Резисторы можно разделить на постоянные, переменные и подстроечные. Главное их отличие друг от друга — возможность изменения показателя сопротивления. Чаще всего встречаются постоянные резисторы – данный показатель в них нельзя изменить, поэтому они и получили такое название. Переменные отличаются тем, что величину сопротивления в них можно настраивать. В подстроечном резисторе её также можно изменять, но отличие данной разновидности в том, что он не рассчитан на частое изменение параметра. Подстроечные резисторы выполняются в более компактном корпусе по сравнению с переменными.

Чтобы вычислить падение напряжения на резисторе, нужно помнить, что снижение нагрузки, приложенной ко всей цепи (то есть, напряжения, подключённого к контуру) может быть получено как для всего контура, так и для любого элемента цепи. Напряжение понижается за счёт сопротивления, которым обладают проводники.

Падение напряжения на резисторе зависит от силы проходящего тока и характеристик проводников. Температура и показатели тока также имеют значение. Например, напряжение, измеренное вольтметром на лампочке, подключённой к сети 220 В, будет немного ниже за счёт сопротивления, которым обладает лампочка.

Источники питания имеют разную величину напряжения. Это значение может превышать то, которое бывает необходимо на выходе. Чтобы нагрузка, которую требуется запитать, не сгорела, часто возникает необходимость в понижении вольтажа, в том числе с помощью резисторов.

Сравнительная таблица напряжений

Источник питания Напряжение
NiCd аккумулятор 1,2 В
Литий-железо-фосфатный аккумулятор 3,3 В
Батарея типа «Крона» 9 В
Автомобильный аккумулятор 12 В
Аккумулятор для грузовых автомобилей 24 В

В этом случае резистор должен уменьшить протекающий по цепи ток. При этом ток не превращается в тепло, происходит именно его ограничение. То есть при включении резистора в цепь ток упадёт – в этом и состоит работа резистора, при совершении которой элемент нагревается.

В общем случае падения напряжения можно рассчитать, используя простую формулу, связывающее показатели между собой.

Но в ряде случаев, например, при параллельном подключении сопротивлений, посчитать необходимую величину уже сложнее. В этом случае по специальной формуле потребуется привести сопротивление параллельных веток к одному числу:

Смотрите также:   Как собрать коллектор для теплого пола своими руками

R = R1*R2 / (R1+R2)

При необходимости также учитываются другие сопротивления, суммирующиеся с этим значением (например, сопротивление провода и источника питания).

Для чего нужен понижающий резистор АКПП

Понижающий резистор коробки автомат

Чтобы понять, где находится понижающий резистор АКПП и для чего он нужен, давайте рассмотрим данный элемент более подробно. На сегодняшний день, практически  все АКПП комплектуются понижающими резисторами.

Понижающий резистор, являясь одним из составляющих элементов коробки автомат, отвечает за плавное (без рывков) переключение передач с первой скорости на вторую.

Чтобы определить, где стоит понижающий резистор АКПП, водителю достаточно открыть техническую документацию (мануал)  к транспортному средству. В инструкции указано место расположения (схема АКПП), тип и номинал понижающего резистора.

Внешне данный  радиоэлемент  очень напоминает  элементы, устанавливаемые на бытовую технику. Чтобы защитить резистор от влаги и грязи, его устанавливают под капотом автомобиля, недалеко от корпуса АКПП. Данный элемент имеет дополнительную небольшую защиту в виде «козырька» (щитка).

ЭБУ АКПП устройство принцип работы
Рекомендуем также прочитать статью о том, как работает ЭБУ АКПП. Из этой статьи вы узнаете о принципах работы и устройстве блока управления автоматической коробкой передач.

В зависимости от конструктивных особенностей автомобиля резистор АКПП может располагаться в разных частях корпуса.  Например, в автомобилях NISSAN резистор АКПП («дроп-резистор») расположен под воздушным фильтром в металлическом корпусе, прикрепленном двумя болтами.

Если говорить о том, какие функции выполняет понижающий резистор АКПП, электронный блок управления АКПП посылает различные импульсы радиоэлементам, в том числе и понижающему резистору. Данные элементы, в свою очередь, меняя свои показания, влияют на работу АКПП.

В данном случае, понижающий резистор, получив импульс от электронного блока управления, передает напряжение на соленоид, управляющий давлением в контуре АКПП. Таким образом, резистор влияет на то, до какого предела открыть соленоид.

В свою очередь, трансмиссионная жидкость, протекающая под давлением, способствует плавному переключению скоростей в коробке передач. Это и есть работа понижающего резистора, в функции которого входит корректировка плавности переключения скоростных режимов путем подачи сигнала управления давлением переключения.

Выход из строя понижающего резистора АКПП и способы устранения неисправности

Понижающий резистор АКПП диагностика

Такие проблемы как возникновение рывков или пинков при переключении с первой на вторую передачу не всегда требуют сложного решения. Вероятнее всего, причина может быть в вышедшем из строя понижающем резисторе.

Если резистор по тем или иным причинам не выполняет свои функции, переключение скоростей будет максимально быстрым и резким. Как следствие, результатом становится возникновение толчков и рывков с небольшой пробуксовкой.

Способы устранения неисправностей:

  • проверка работоспособности понижающего резистора АКПП (с помощью Омметра или мультиметра замеряют сопротивление, которое должно соответствовать сопротивлению, указанному в мануале). В случае несоответствия резистор меняют.
  • на место устанавливают слетевшую проводку резистора (элемент проверяют на целостность, устанавливают на место провод и проверяют сопротивление).

Обратите внимание, если проблему не удалось устранить самостоятельно, необходимо обратиться на СТО для проведения полной диагностики и выявления поломки. Возможно, проблема жесткого переключения передач не связана с понижающим резистором АКПП.

Понижение напряжения постоянного тока

В практике питания бытовых приборов существует масса примеров работы электрических устройств от постоянного тока. Но номинал рабочего напряжения может существенно отличаться, к примеру, если из 36 В вам нужно получить 12 В, или в ситуациях, когда от USB разъема персонального компьютера нужно запитать прибор от 3 В вместо имеющихся 5 вольт.

Для снижения такого уровня от блока питания или другого источника почти вполовину можно использовать как простые методы – включение в цепь дополнительного сопротивления, так и более эффективные – заменить стабилизатор напряжения в ветке обратной связи.

Замена резистора или стабилитрона
Рис. 1. Замена резистора или стабилитрона

На рисунке выше приведен пример схемы блока питания, в котором вы можете понизить вольтаж путем изменения параметров резистора и стабилитрона. Этот узел на рисунке обведен красным кругом, но в других моделях место установки, как и способ подсоединения, может отличаться. На некоторых схемах, чтобы понизить напряжение вы сможете воспользоваться лишь одним стабилитроном.

Если у вас нет возможности подключаться к блоку питания – можно обойтись и менее изящными методами. К примеру, вы можете понизить напряжение за счет включения в цепь резистора или подобрать диоды, второй вариант является более практичным для цепей постоянного тока. Этот принцип основан на падении напряжения за счет внутреннего сопротивления элементов. В зависимости от соотношения проводимости рабочей нагрузки и полупроводникового элемента может понадобиться около 3 – 4 диодов.

Понижение постоянного напряжения диодами
Рис. 2. Понижение постоянного напряжения диодами

На рисунке выше показана принципиальная схема понижения напряжения при помощи диодов. Для этого они включаются в цепь последовательно по отношению к нагрузке. При этом выходное напряжение окажется ниже входного ровно на такую величину, которая будет падать на каждом диоде в цепи.  Это довольно простой и доступный способ, позволяющий понизить напряжение, но его основной недостаток – расход мощности для каждого диода, что приведет к дополнительным затратам электроэнергии.

Понижение напряжения переменного тока

Переменное напряжение в 220 Вольт повсеместно используется для бытовых нужд, за счет физических особенностей его куда проще понизить до какой-либо величины или осуществлять любые другие манипуляции. В большинстве случаев, электрические приборы и так рассчитаны на питание от электрической сети, но если они были приобретены за рубежом, то и уровень напряжения для них может существенно отличаться.

К примеру, привезенные из США устройства питаются от 110В переменного тока, и некоторые умельцы берутся перематывать понижающий трансформатор для получения нужного уровня. Но, следует отметить, что импульсный преобразователь, которым часто комплектуется различный электроинструмент и приборы не стоит перематывать, так как это приведет к его некорректной работе в дальнейшем. Куда целесообразнее установить автотрансформатор или другой на нужный вам номинал, чтобы понизить напряжение.

С помощью трансформатора

Изменение величины напряжения при помощи электрических машин используется в блоках питания и подзарядных устройствах. Но чтобы понизить  вольтаж источника в такой способ, можно использовать различные типы преобразовательных трансформаторов:

  • С выводом от средней точки – могут выдавать разность потенциалов как 220В, так и в два раза меньшее – 127В или 110В. От него вы сможете взять установленный номинал на те же 110В со средней точки. Это заводские изделия, которые массово устанавливались в старых советских телевизорах и других приборах. Но у этой схемы преобразователя имеется существенный недостаток – если нарушить целостность обмотки ниже среднего вывода, то на выходе трансформатора получится номинал значительно большей величины.
Смотрите также:   Нюансы и особенности сварки: полезные рекомендации

Понижение трансформатором с отводом от средней точки
Рис. 3. Понижение трансформатором с отводом от средней точки

  • Автотрансформатором – это универсальная электрическая машина, которая способна не только понизить вольтаж, но и повысить его до нужного вам уровня. Для этого достаточно перевести ручку в нужное положение и проследить полученные показания на вольтметре.

Использование автотрансформатора
Рис. 4. Использование автотрансформатора

  • Понижающим трансформатором с преобразованием 220В на нужный вам номинал или с любого другого напряжения переменной частоты. Реализовать этот метод можно как уже готовыми моделями трансформаторов, так и самодельными. За счет наличия большого количества инструментов и приспособлений, сегодня каждый может собрать трансформатор с заданными параметрами в домашних условиях.
  • Выбирая конкретную модель электрической машины, чтобы понизить напряжение, обратите внимание на характеристики конкретной модели по отношению к тем устройствам, которые вы хотите запитать.

Наиболее актуальными параметрами у трансформаторов являются:

  • Мощность – трансформатор должен не только соответствовать, подключаемой к нему нагрузке, но и превосходить ее, хотя бы на 10 – 20%. В противном случае максимальный ток приведет к перегреву обмоток трансформатора и дальнейшему выходу со строя.
  • Номинал напряжения – выбирается и для первичной, и для вторичной цепи. Оба параметра одинаково важны, так как, выбрав модель с входным напряжением на 200 или 190В, на выходе вы при питании от 220В получится пропорционально большая величина.
  • Защита от поражения электротоком – все обмотки и выводы от них должны обязательно иметь достаточную изоляцию и защиту от прикосновения.
  • Класс пыле- влагозащищенности – определяет устойчивость оборудования к воздействию окружающих факторов. В современных приборах обозначается индексом IP.

Помимо этого любой преобразователь напряжения, даже импульсный трансформатор, следовало бы защитить от токов короткого замыкания и перегрузки в обмотках. Это существенно сократит затраты на ремонт при возникновении аварийных ситуаций.

С помощью резистора

Для понижения напряжения в цепь нагрузки последовательно включается  делитель напряжения в виде активного сопротивления.

Основной сложностью в регулировке напряжения на подключаемом приборе является зависимость от нескольких параметров:

  • величины напряжения;
  • сопротивления нагрузки;
  • мощности источника.

Если  вы будете понижать от бытовой сети, то ее можно считать источником бесконечной мощности и принять эту составляющую за константу. Тогда расчет резистора будет выполняться таким методом:

R = Uc/I — Rн ,

где

  • R – сопротивление резистора;
  • RН – сопротивление прибора нагрузки;
  • I – ток, который должен обеспечиваться в номинальном режиме прибора;
  •  UC – напряжение в сети.

После вычисления номинала резистора можете подобрать соответствующую модель из имеющегося ряда. Стоит отметить, что куда удобнее менять потенциал при помощи переменного резистора, включенного в цепь. Подключив его последовательно с нагрузкой, вы можете подбирать положение таким образом, чтобы понизить напряжение до необходимой величины. Однако эффективным способ назвать нельзя, так как помимо работы в приборе, электрическая энергия будет просто рассеиваться на резисторе, поэтому этот вариант является временным или одноразовым решением.

Закон Ома для электрической цепи

В основе расчёта входного и выходного напряжения цепи лежит закон Ома, знакомый ещё со школы по курсу физики. Базовая формула расчёта напряжения на участке цепи выглядит так:

закон-ома

Определить напряжение в цепи переменного тока можно по следующей формуле:

U=I/ Z, где

в этой формуле Z означает сопротивление (Ом), которое было получено на протяжении всей цепи.

В ряде случаев показатели не могут быть рассчитаны по этим фармулам напрямую.

  1. В случаях нахождения проводников или диэлектриков под воздействием высокого напряжения.
  2. В случаях быстро изменяющихся электромагнитных полей при прохождении токов высокой частоты. В этом случае требуется учитывать также инерцию переносящих заряд частиц.
  3. В условиях возникновении свойств сверхпроводимости, если цепи работают при экстремально низких температурах.
  4. При нагреве проводника протекающим по нему током.
  5. Для светодиодов. Зависимость между током и падением напряжения в этом случае нелинейная.
  6. Для процессов в устройствах на основе полупроводников.

В зависимости от того, как элементы включены в цепь — последовательно или параллельно — общее сопротивление рассчитывают по-разному.

Параллельное и последовательное подключение

Расчёт при последовательном подключении

При последовательном соединении элементы идут друг за другом, и выход предыдущего соединяется с входом последующего. Общее сопротивление в этом случае можно посчитать по формуле:

R = R1 + R2 + … +Rn, где

R1…Rn – сопротивления n-элементов (Ом).

Расчёт при параллельном подключении

При параллельном соединении оба элемента цепи включаются параллельно друг другу. Сопротивление в этом случае получают через дробь, формула для его расчёта выглядит так:

1/R = 1/R1 + 1/R2 + … + 1/Rn, где

R1 … Rn – сопротивления n-элементов (Ом).

Внимание! При разработке схем устройств обычно используются комбинированные соединения. Для расчёта сопротивления схема упрощается, и общее сопротивление сперва определяется для участков с параллельным соединением, а потом суммируется как для цепи с последовательными соединениями элементов.

Для упрощения и ускорения расчётов можно это сделать онлайн.

Характеристика мощности резистора

Параметр мощности резистора является одним из наиболее важных при построении схем для реальных устройств.

Мощность электрического тока на каком-либо участке цепи равна произведению силы тока, протекающую по этому участку на напряжение на этом участке цепи. P=I*U. Единица измерения 1Вт.

При протекании тока через резистор совершается работа по ограничению электрического тока. При совершении работы выделяется тепло. Резистор рассеивает это тепло в окружающую среду.

Но если резистор будет совершать слишком большую работу, выделять слишком много тепла — он перестанет успевать рассеивать вырабатывающееся внутри него тепло, очень сильно нагреется и сгорит.

Что произойдет в результате этого казуса, зависит от твоего личного коэффициента удачи.

Характеристика мощности резистора — это максимальная мощность тока, которую он способен выдержать и не перегреться.

Соединение резисторов

Резисторы в цепях электрического тока имеют последовательное и параллельное соединение.

Как рассчитать сопротивление гасящего резистора.

Сопротивление гасящего резистора рассчитывают по формуле:  R=U/I

Смотрите также:   Умножители напряжения - теория, практика, схемы

Где:  U – излишек напряжения, который необходимо погасить (В),  I – ток потребляемый цепью или устройством (А).

Как рассчитать мощность гасящего резистора.

Расчет мощности гасящего резистора проводят по формуле:  P=I2R

Где I – ток потребляемый цепью или устройством (А), R– сопротивление резистора (Ом).

Как рассчитать напряжение падения на сопротивлении.

Напряжение падения на сопротивлении можно рассчитать  по формуле:  Uпад.=RI

Где R– сопротивление гасящего резистора (Ом), I– ток потребляемый устройством или цепью (А).

Как рассчитать ток потребляемый устройством или цепью.

Рассчитать ток потребляемый устройством или цепью можно по формуле: I=P/U

Где P– мощность устройства (Вт), U– напряжение питания устройства (В).

Как рассчитать мощность устройства в Вт.

Рассчитать мощность устройства в Вт. можно по формуле: P=IU

Где I– ток потребляемый устройством (А), U– напряжение питания устройства (В).

Как рассчитать длину радиоволны.

Рассчитать длину радиоволны можно по формуле: ƛ=300000/ƒ

Где ƒ-частота в килогерцах, ƛ- длинна волны в метрах.

Как рассчитать частоту радиосигнала.

Частоту радиосигнала можно рассчитать по формуле: ƒ=300000/ƛ

Где ƛ- длинна волны в метрах, ƒ – частота в килогерцах.

Как рассчитать номинальную выходную мощность звуковой частоты.

Рассчитать номинальную выходную мощность звуковоспроизводящего устройства (усилитель, проигрыватель и т.п.) можно по формуле: P=U 2 вых./ Rном .

Где U 2 – напряжение звуковой частоты на нагрузке, R– номинальное сопротивление нагрузки.

И в завершении еще несколько формул. По этим формулам, ведут расчет сопротивления и емкости резисторов и конденсаторов в тех случаях, когда возникает необходимость в параллельном или последовательном их соединении.

Как рассчитать сопротивление двух параллельно включенных резисторов.

Расчет соединенных параллельно двух резисторов производят по формуле: R=R1R2/(R1+R2)

Где R1 и R2 — сопротивление первого и второго резистора соответственно (Ом).

Как рассчитать сопротивление более двух включенных параллельно резисторов.

Расчет сопротивления включенных параллельно более чем двух резисторов проводят по формуле: 1/R=1/R1+1/R2+1/Rn…

Где R1, R2, Rn… — сопротивление первого, второго и последующих резисторов соответственно (Ом).

Как рассчитать емкость включенных параллельно двух или более конденсаторов.

Расчет емкости соединенных параллельно нескольких конденсаторов проводят по формуле: C=C1+ C2+Cn…

Где C1 , C2 и Cn– емкость первого, второго и последующих конденсаторов соответственно (мФ).

Как зависит падение напряжения на участке цепи от величины тока?

По закону Ома падение напряжения в каком-либо участке цепи U равно произведению сопротивления этого участка цепи R на силу тока в нем I, т. е. U — RI. Таким образом, чем больше сопротивление участка цепи, тем больше падение напряжения в этом участке цепи при данной силе тока.

Как рассчитать потери напряжения в линии?

потеря напряжения в проводе равна: ΔU=(2*I*L)/(γ*s), где L — длина линии (мм), γ — величина, обратная удельному сопротивлению, а s — сечение провода (мм2); по формуле s=(2*I*L)/(γ*ΔU) можно рассчитывать необходимое сечение провода по требуемой нагрузке или производить проверочный расчёт потери.

Почему происходит падение напряжения?

Основные причины снижения напряжения в сети

низкое напряжение в линии ЛЭП; недостаточная мощность трансформатора, установленного на подстанции; перекос напряжения по фазам на линии от трансформатора до дома; проблемы в распределительном щитке, малое сечение проводов в разводке.

Значение сопротивления

Сопротивление является фундаментальной величиной в электрических процессах. Его значение неизменно связано с током и напряжением. Их общая зависимость описывается с помощью закона Ома: сила тока, возникшая на участке цепи, прямо пропорциональна разности потенциалов между крайними точками этого участка и обратно пропорциональна его сопротивлению. Из этого закона находится сопротивление по следующей формуле:

R = U / I, где:

  • R — сопротивление на участке цепи, Ом.
  • I — сила тока, проходящая через этот участок, А.
  • U — разность потенциалов на узлах части схемы, В.

Фактически же сопротивление элемента определяется его физической структурой и обусловлено колебаниями атомов в кристаллической решётке. Поэтому все материалы различаются на проводники, полупроводники и диэлектрики в зависимости от способности проводить электричество.

Ток — это направленное движение носителей заряда. Для его возникновения необходимо, чтобы вещество имело свободные электроны. Если к такому физическому телу приложить электрическое поле, то перемещаемые им заряды начнутся сталкиваться с неоднородностями структуры.

Эти дефекты образуются из-за различных примесей, нарушения периодичности решётки, тепловых флуктуаций. Ударяясь о них, электрон расходует энергию, которая преобразовывается в тепловую. В результате заряд теряет импульс, а величина разности потенциалов уменьшается.

Но закон Ома можно применить не для всех веществ. В электролитах, диэлектриках и полупроводниках линейная зависимость между тремя величинами наблюдается не всегда. Сопротивление таких веществ зависит от физических параметров проводника, а именно — его длины и площади поперечного сечения, при этом оно чувствительно к изменению температуры.

Эта зависимость описывается с помощью формулы R = p * l / S. То есть сопротивление прямо пропорционально длине и обратно пропорционально площади проводника. Величина p называется удельным сопротивлением и определяется типом материала. Его значение берётся из справочника.

Импеданс резистора

Закон Ома применим для идеального резистора, не обладающего паразитными сопротивлениями. Полное сопротивление (импеданс) определяется исходя из эквивалентной схемы. Точный расчёт сопротивления для понижения напряжения необходимо проводить по другим формулам. Эквивалентная схема резистора, кроме активного импеданса, содержит также ёмкостное и индуктивное сопротивление.

Первое приводит к медленному накоплению заряда, который рассеивается при изменении направления тока. Чем больше паразитная ёмкость, тем дольше она заряжается. Соответственно, чем быстрее ток изменяет своё направление, тем меньше его ёмкостное сопротивление. Второе же характеризуется магнитным полем, чье появление мешает току изменять направление, поэтому, чем быстрее ток изменяет своё движение, тем больше становится индуктивное сопротивление.

Импеданс вычисляется по формуле: I = U/Z, где Z = (R2+(Xc-Xl)2)½. Где:

  • R — активное значение, R = p*l/s.
  • Xc — ёмкостная величина, Хс = 1/w*C.
  • Xl — индуктивная величина, Хl = w*C.
  • w- циклическая частота, w = 2πƒ.

Зная полное сопротивление резистора, можно точнее рассчитать падение напряжения в нём. Но для измерения паразитных составляющих понадобится использовать узкоспециализированные приборы. В обычных расчётах сопротивление вычисляют, учитывая только его активное значение, а паразитные величины принимают за ничтожно малые.

Источники
  • https://amperof.ru/teoriya/soprotivlenie-rezistora-formula.html
  • https://onlineelektrik.ru/eoborudovanie/kondensatori/padenie-napryazheniya-na-rezistore-formula-rascheta.html
  • http://KrutiMotor.ru/ponizhayushhij-rezistor-akpp/
  • https://www.asutpp.ru/kak-ponizit-napryazhenie.html
  • https://1000eletric.com/kak-rasschitat-padenie-napryazheniya-na-soprotivlenii/
  • http://kulbakimaster.ru/%D0%BC%D0%B0%D0%BB%D0%B5%D0%BD%D1%8C%D0%BA%D0%B8%D0%B5-%D1%85%D0%B8%D1%82%D1%80%D0%BE%D1%81%D1%82%D0%B8-%D1%87%D0%B0%D1%81%D1%82%D1%8C-4
  • https://lux-stahl.ru/schetchik/ponizhenie-napryazheniya-rezistorom.html
  • https://mirpil.ru/drugoe/kak-rasschitat-padenie-napryazheniya-na-rezistore.html
  • https://kmd-mk.ru/kak-rasschitat-padenie-napryazheniya-na-rezistore/

Помогла ли вам статья?

Рейтинг
( Пока оценок нет )
Библиотека радиолюбителя
Adblock
detector